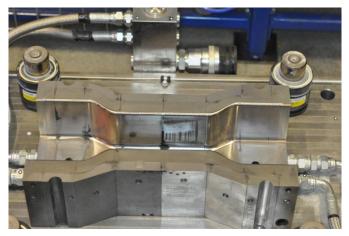
Simulation of Wear Processes in LS-DYNA

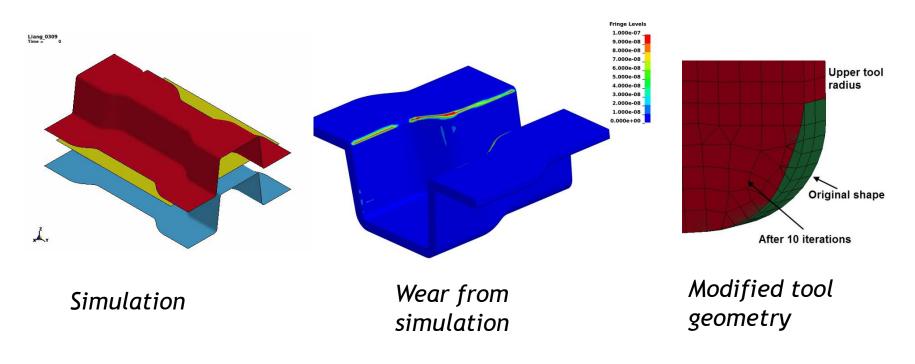

Thomas Borrvall, Anders Jernberg and Mikael Schill, DYNAmore Nordic AB

Liang Deng and Mats Oldenburg, Luleå Technical University

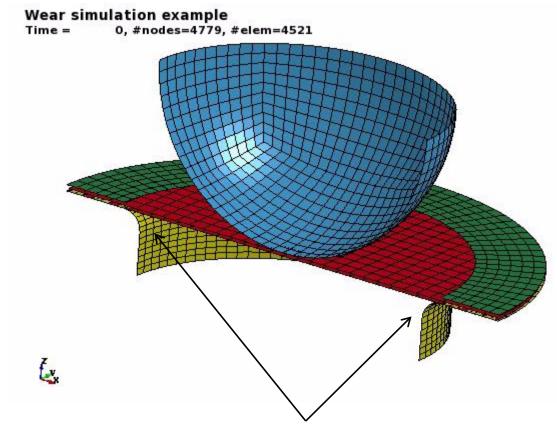
Motivation and Example

- Hot forming process reduces life length of tools
 - Hot blank is formed and subsequently cooled (quenching)
 - High contact pressures and cyclic temperatures
 - Scratches due to sliding wear along radii
- Significant cost incurred in replacing worn out tools
 - Important to understand the mechanisms behind wear
- A dog bone wear test illustrates

Upper tool



Wear after several strokes


Wear Simulation of Dog Bone

- Possible to post-process wear in LS-PrePost
 - Standard wear law or user defined
- Iteratively modify geometry to simulate long term use
 - Several LS-DYNA runs with intermediate processing in LS-PrePost

Tutorial - wear in deep draw of spherical cup

In particular interested in the wear along the radii of the die

Archard's law

 LS-DYNA computes the wear as a nodal quantity which is expressed in rate form as

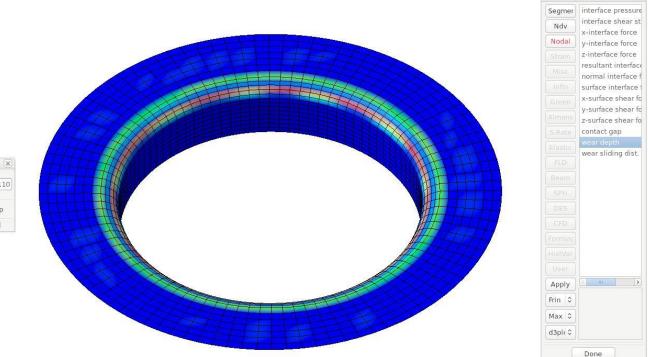
$$\dot{w} = K \frac{pv}{H}$$

- w is nodal wear depth in direction of the surface normal. Surface normal is computed from average of element normals. Shell element normals in a wear interface must to be consistently oriented.
- K(p, v) is a dimensionless scale factor which can be given as a function of contact pressure p and sliding velocity v.
- H(T) is the hardness for the contact side. The hardness can be given as a function of nodal temperature T.
- p is the nodal pressure.
- v is the sliding velocity.

Add wear to an LS-DYNA input deck

*CONTACT_ADD_WEAR

Card 1	1	2	3	4	5	6	7	8
Variable	CID	WTYPE	P1	P2	P3	P4	P5	P6
Туре	I	I	F	F	F	F	F	F
Default	None	0	0.0	0.0	0.0	0.0	0.0	0.0


Use any of these contacts

- *CONTACT_AUTOMATIC_SURFACE_TO_SURFACE_{MORTAR}
- *CONTACT_FORMING_SURFACE_TO_SURFACE_{MORTAR}
- *CONTACT_AUTOMATIC_SINGLE_SURFACE_MORTAR
- *CONTACT_FORMING_ONE_WAY_SURFACE_TO_SURFACE
- Set SPR and/or MPR to "1" on the contact for interfaces of interest
- Define *CONTACT_ADD_WEAR
 - Point to contact CID
 - WTYPE=0 for Archard's law
 - **P1-P3** parameters (K, H_s, H_m)
- Set NWEAR>0 on *DATABASE_EXTENT_INTFOR
 - NWEAR=1 for wear depth
 - NWEAR=2 for wear depth and sliding distance

Post process wear in LS-PrePost

Contours of Wear depth min=0, at node# 1151 max=5.77671e-05, at node# 5910

Fringe Component X

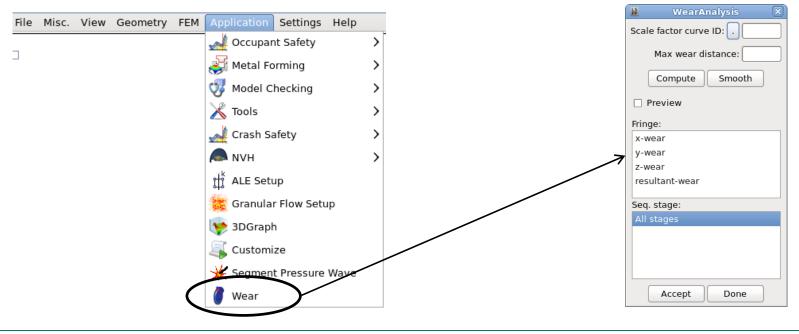
K

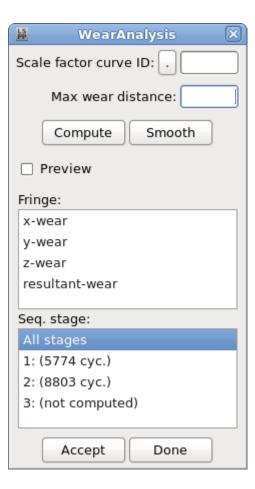
- Run the input in LS-DYNA with s=intfor on the command line
- Open the intfor file in LS-PrePost
- In the fringe menu, wear depth and wear sliding dist. are found

Process wear in LS-DYNA

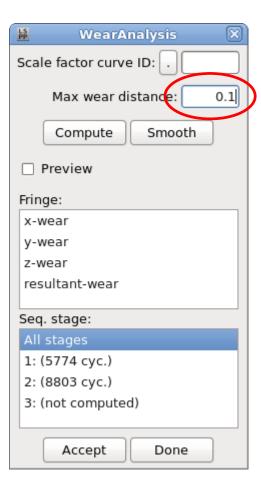
1 LS-DYNA sim = 1 wear cycle NCYC cycles = 1 wear stage The intfor file is for assessing the influence of wear for a given tool geometry, but to understand how wear affects the process in the long haul (thousands of repetitions) we need to import the wear information back into LS-DYNA

*INITIAL_CONTACT_WEAR

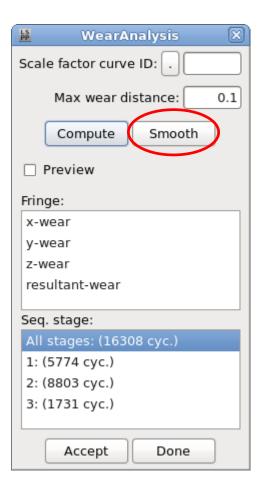

Card 1	1	2	3	4	5	6	7	8
Variable	CID	NID	WDEPT H	NX	NY	NZ	ISEQ	NCYC
Туре	I	I	F	F	F	F	I	I
Default	None	None	None	None	None	None	None	None

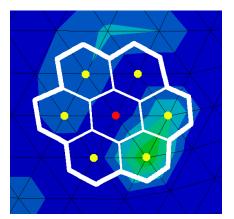

- Set SPR and/or MPR to "2" on the contact, this will also make the side available to the intfor file
- Set NCYC>0 on *INTERFACE_SPRINGBACK_LSDYNA to get *INITIAL_CONTACT_WEAR data written to dynain
- Each card corresponds to a wear increment for a given node for 1 cycle
- It is assumed that the results are valid for 1 stage, i.e., NCYC cycles

Rerunning with wear information


- Include the dynain file as is to the original input
 - The dynain should not contain anything but the *INITIAL_CONTACT_WEAR cards
- Option A No intermediate processing, rerun the file in LS-DYNA
 - Each node subject to wear will be moved by the wear depth in the direction of wear, times NCYC, thus completing 1 stage
 - The user is "blind", difficult to obtain a reasonable geometry change
- Option B Intermediate processing, open the file in LS-PrePost

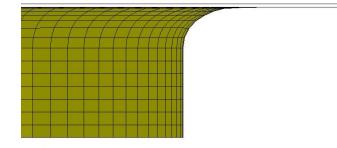
- An *INITIAL_CONTACT_WEAR card gives information from one cycle, now the intermediate processing step amounts to determine the wear from one stage
- Option 1
 - Leave Scale factor curve ID blank


- An ***INITIAL_CONTACT_WEAR** card gives information from *one* cycle, now the intermediate processing step amounts to determine the wear from one *stage*
- Option 1
 - Leave Scale factor curve ID blank
 - Set a Max wear distance, corresponding to how much geometry change you allow based on the latest run



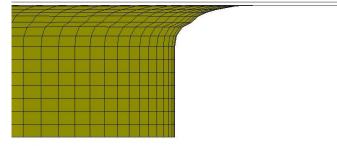
😫 WearAnalysis 🗙					
Scale factor curve ID: .					
Max wear distance: 0.1					
Compute Smooth					
Preview					
Fringe:					
x-wear					
y-wear					
z-wear					
resultant-wear					
Seq. stage:					
All stages: (16308 cyc.)					
1: (5774 cyc.)					
2: (8805 cyc.)					
3: (1731 cyc.)					
Accept Done					

- An ***INITIAL_CONTACT_WEAR** card gives information from *one* cycle, now the intermediate processing step amounts to determine the wear from one *stage*
- Option 1
 - Leave Scale factor curve ID blank
 - Set a Max wear distance, corresponding to how much geometry change you allow based on the latest run
 - Click Compute, LS-PrePost will determine the number of cycles required for the max wear at any node to reach Max wear distance, assuming the wear in each cycle is constant



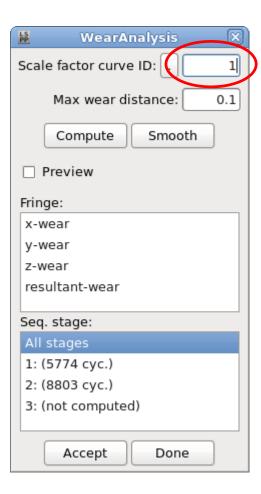
Option 1

- Leave Scale factor curve ID blank
- Set a Max wear distance, corresponding to how much geometry change you allow based on the latest run
- Click Compute, LS-PrePost will determine the number of cycles required for the max wear at any node to reach Max wear distance, assuming the wear in each cycle is constant
- Repeatedly click Smooth to smooth the geometry change, to even out local "spots" in the wear


- Option 1
 - Leave Scale factor curve ID blank

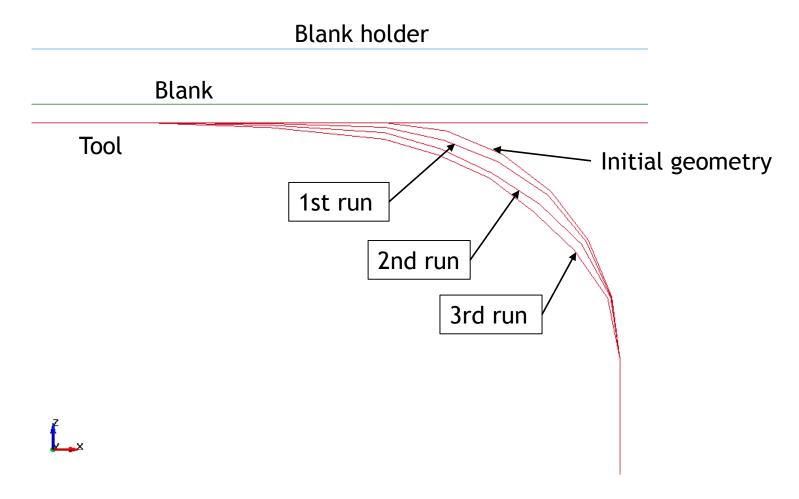
× k

- Set a Max wear distance, corresponding to how much geometry change you allow based on the latest run
- Click Compute, LS-PrePost will determine the number of cycles required for the max wear at any node to reach Max wear distance, assuming the wear in each cycle is constant
- Repeatedly click Smooth to smooth the geometry change, to even out local "spots" in the wear
- The geometry change can and should be previewed by checking *Preview* throughout

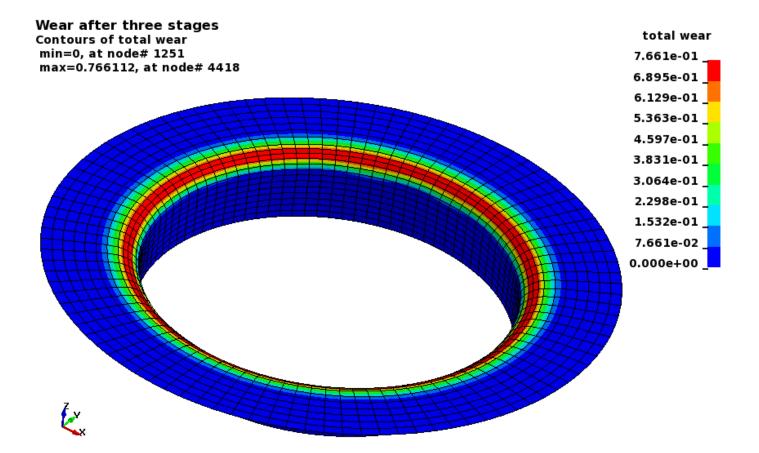

- Option 1
 - Leave Scale factor curve ID blank
 - Set a Max wear distance, corresponding to how much geometry change you allow based on the latest run
 - Click Compute, LS-PrePost will determine the number of cycles required for the max wear at any node to reach Max wear distance, assuming the wear in each cycle is constant
 - Repeatedly click Smooth to smooth the geometry change, to even out local "spots" in the wear
 - The geometry change can and should be previewed by checking *Preview* throughout

📕 WearAnalysis 🗙
Scale factor curve ID: .
Max wear distance: 0.1
Compute Smooth
✓ Preview
Fringe:
x-wear
y-wear
z-wear
resultant-wear
Seq. stage:
All stages: (16308 cyc.)
1: (5774 cyc.)
2: (8803 cyc.)
3: (1731 cyc.)
Accept Done

- An *INITIAL_CONTACT_WEAR card gives information from one cycle, now the intermediate processing step amounts to determine the wear from one stage
- Option 1
 - Leave Scale factor curve ID blank
 - Set a Max wear distance, corresponding to how much geometry change you allow based on the latest run
 - Click Compute, LS-PrePost will determine the number of cycles required for the max wear at any node to reach Max wear distance, assuming the wear in each cycle is constant
 - Repeatedly click Smooth to smooth the geometry change, to even out local "spots" in the wear
 - The geometry change can and should be previewed by checking *Preview* throughout
 - If anything goes wrong, set a new Max wear distance and repeat the procedure, click Accept when satisfied



- Sometimes the surface hardness changes with depth, for which the wear can *not* be assumed constant in each cycle
- Option 2
 - Set Scale factor curve ID to a curve containing a scale factor as function of total wear depth d
 - The procedure is then follows the one of Option 1
- After the geometry change is accepted, save the file to a new input for rerunning in LS-DYNA with the updated tool geometry
- This describes one stage in the entire wear process, to be repeated



Wear after three consecutive wear simulations

Fringe plot of total wear

Automated multi-stage run script

 For cases when the intermediate processing step can be assumed identical everything can be done using a script

run.sh

```
#!/bin/bash
mppsub 32 mppdyna_d_dev_abcde_platformmpi -c -l -b i=run.k memory=400m
lspre43 -nographics c=wear.cfile
Clean
mppsub 32 mppdyna_d_dev_abcde_platformmpi -c -l -b i=run.k memory=400m
lspre43 -nographics c=wear.cfile
Clean
mppsub 32 mppdyna_d_dev_abcde_platformmpi -c -l -b i=run.k memory=400m
lspre43 -nographics c=wear.cfile
# Don't Clean. keeping the results from last run
# All previous wear results are now saved in "run.k"
```

#Note that the submit script, mppsub in this case, must not return the prompt until the #simulation has finished completely. #The "original_input.k" is copied to a "run.k" before this script is started.

LS-PrePost command file

wear.cfile

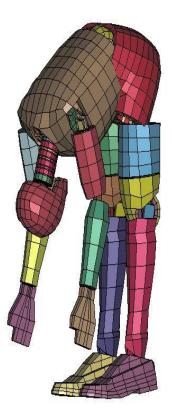
openc keyword "/disk/home/anders/wear/original_input.k" import keyword nooffset import keyword "/disk/home/anders/wear/dynain" save keywordoutversion 7 wear maxdist 0.5 wear compute wear smooth wear accept save keyword "/disk/home/anders/wear/run.k" exit

- Read in the original keyword file
- Import the dynain file
- Set the max wear distance to 0.5
- Compute the wear
- Smooth the wear once
- Update the node coordinates
- Write a new input file, run.k

Concluding remarks and general recommendations

- LS-DYNA and LS-PrePost can be used in parallel to simulate wear processes
 - "In the beginning" but conceptually works well
 - Manual or automated processing
- For the best results
 - The contact pressure and friction should be smooth
 - Mesh density should be relatively fine for parts where wear is important
 - Stiff contact will localize wear for faceted geometries, soften to distribute
 - One wear stage must not change the geometry too much as this will result in unrealistic wear in subsequent stages
- Part is available in R9.0 and all is available in R10
 - R9.0 post processing only
 - R10 entire process simulation

Future work - mainly driven by user feedback


LS-DYNA

- More contact types(?)
- More advanced wear laws(?)

- LS-PrePost
 - Local smoothing(?)
 - Manual interaction(?)

Thank you!

Your LS-DYNA distributor and more

