

NUMERICAL ANALYSIS OF STENT DELIVERY SYSTEMS DURING PRE- AND INTRAOPERATIVE PROCESSES

15. DEUTSCHES LS-DYNA FORUM

October 17, 2018

<u>MA Geith</u>, K Swidergal, TG Schratzenstaller, GA Holzapfel, M Wagner

Institute of Biomechanics, TU Graz Faculty of Mechanical Engineering, OTH Regensburg Faculty of Engineering Science and Technology, NTNU Trondheim

15. DEUTSCHES LS-DYNA FORUM

Graz University of Technology I Institute of Biomechanics | Markus A. Geith

2/19 CLINICAL RELEVANCE

Coronary stent implantation (CSI)

- Restenosis still 15 20% (Bønaa et al. 2016)
- No improvement in fatality rate by drug eluting stents (DES) (Bønaa et al. 2016, Sabate et al. 2012, Kaiser et al. 2010)
- Vascular injuries due to high loads as main indicator for intimal/medial thickening.

Stents with lower injury potential via FEA

- 1. Correlation: Mechanical response injury severity wall thickening
 - Long term in vitro experiments
 - □ Morphological analysis
 - □ Immuno-histological analysis
- 2. New material damage and growth model
- 3. FEA of an expanding stent inside an artery.
 - □ Three-layer artery model
 - Stent/balloon catheter model

^{3/19} HYPOTHESIS AND MOTIVATION

Classical approach

- STEP 1: Geometry modeling with CAD
- STEP 2: Discretization and pre-processing
- STEP 3: FEA of stent deployment
 - Explicit solver
 - □ Simplified balloon models
 - Expanding cylinders
 - Folded cylinders
 - Geometries from micro-CT scans
 - □ Stent without residual stresses

STEP 4: Post-processing

Improved approach

- STEP 1: Geometry modeling with CAD
- STEP 2: Discretization and pre-processing
- **STEP 3: FEA of pre-operative processes**

 - **Crimped stent**
- STEP 4: FEA of stent deployment
- STEP 5: Post-processing

More realistic CSI simulations

- No dynamic inertia effects (mass scaling)
- □ Ideal for quasi-static problems (large time steps)
- □ Realistic simulation times
- □ Entire and detailed balloon geometry
- Influence of expansion mechanisms and tapers
- □ Stress/strain behavior of the balloon membrane
- Residual stresses / deformations.
- Deformation depending on crimping blades

Preoperative processes

Folding

Pleating

Crimping

STEP 1: Geometry modeling with CAD

Balloon catheter Baroonda SDS (BMT GmbH, Weßlingen)

- Proximal taper attached to outer catheter shaft
- Distal taper attached to inner catheter shaft
- Grilamid L25 (PA 12) membrane

1.010E-09
1400 (dry)
1100 (cond.)
0.40

CAD: Computer Aided Design

Coronary stent ESPRIT (concept design)

- □ 8 Segments, 9 Rings
- □ 316 LVM stainless steel

Density $ ho$ [ton/mm ³]	7.850E-09
Young's modulus <i>E</i> [N/mm²]	2.100E+05
Poisson's ratio v	0.29

Performed with Inventor Professional 2019, Autodesk, San Rafael, USA

15. DEUTSCHES LS-DYNA FORUM

4/19

5/19 STEP 2: Discretization and pre-processing

Balloon membrane

- □ Midsurface shell definition
- 97.920 quadrilateral shell elements (CQUAD4)
- Smooth mesh, symmetrical along longitudinal axis
- ELFORM 16, fully integrated shell elements (NIP=5)
- MAT_089, isotropic, plasticity polymer model

Inner and outer shafts; folding-/pleating and crimping blades

- Midsurface (shaft) and outer surface (jaws) shell definition
- Quadrilateral shell elements (CQUAD4)
- □ Rough mesh geometry
- □ MAT_020, Rigid body definition

Stent

- Solid definition
- 119.680 hexa elements (CHEXA)
- Smooth mesh with focus on connecting and curved segments
- Segment symmetrical arrangement
- Rough element size along straight struts
- ELFORM -1, fully integrated S/R solids
- MAT_024, , elasto-plastic isotropic material

Performed with ANSA 18.1.0, Beta CAE Systems, Farmington Hills, USA

^{6/19} IMPLICIT SOLVER smp-d-R10.1 (BRIEF OVERVIEW)

Pros and cons with focus on CSI simulations

- + No dynamic inertia effects (mass scaling)
- + Ideal for quasi-static problems (large time steps)
- + Realistic simulation time

Convergence criteria (Appendix P)

$$\|\Delta \boldsymbol{x}_k\| < \max\left(\varepsilon_d u_{\max}, \sqrt{\max(\varepsilon_a, 0)}\right)$$

$$\langle \Delta \boldsymbol{x}_k, \boldsymbol{F}_k \rangle < \max(\varepsilon_e e_0, 1000 \max(\varepsilon_a, 0)) \\ e_0 = \langle \Delta \boldsymbol{x}_0, \boldsymbol{F}_0 \rangle$$

$$\|\boldsymbol{F}_k\| < \max(\varepsilon_r f_0, 1000\max(\varepsilon_a, 0))$$
$$f_0 = \|\boldsymbol{F}_0\|$$

- High demands on elements, materials and contacts
- Case-specific convergence criteria

k: Iteration step

 ε_d , ε_e , ε_r , ε_a : Displ., energy, residual and absolut tol. u_{\max} : Max. attained displacement Δx_0 : First incremental displacement F_0 : Residual vector

 f_0 : Residual vector norm for implicit step j

*CONTROL_IMPLICIT_SOLUTION (Default)

				\mathcal{E}_d	ε _e	ε _r		ε _a
1	NSOLVR	ILIMIT	MAXREF	DCTOL	ECTOL	RCTOL	LSTOL	ABSTOL
	12 ~	11	15	0.001	0.01	1.0E+10	0.9	1.0E-10

balloon membrane

Shaft

7/19 RECOMMENDATIONS FOR SIMULATION SETUP

Rigid shafts

- BOUNDARY_SPC for the taper ends led to distortion of the cross section
- CONSTRAINED_EXTRA_NODES_SET to attach tapers to rigid shafts
- □ Constrained shafts with CON=1 in MAT_RIGID(020)

Contact

- Mostly MORTAR contacts (balloon membrane as slave side)
- □ IGAP=1 (or carefully increased IGAP to stiffen contact)
- □ For friction set FS=0.2 (stent single surface), FS=0.25 (balloon single surface), FS=0.32 (stent to balloon) and FS=0.2 (jaw to stent)
- Contacts were forced on the initial time step

Control

- □ CONTROL_ACCURACY with IACC=1 and INN=4 for balloon and stent
- □ CONTROL_IMPLICIT_AUTO for automated and customize DTMAX for capturing fast motions
- □ For easy problems CONTROL_IMPLICIT_SOLUTION with default values
- □ For medium problems DCTOL was loosened
- □ For difficult problems RCTOL=0.01 and ABSTOL=-10 (try and error)

^{8/19} STEP 3: FEA of pre-operative processes - FOLDING

Requirements

- One-to-one blade geometries is crucial for realistic results
- □ Contact surfaces rotate around 3 vectors (0 0.072rad, PRESCRIBED_MOTION_RIGID)
- □ Shafts allow 2 DOFs (Ux, ROTx) to prevent membrane buckling (MAT_RIGID, CON1=1)
- □ Inner surface of the balloon is pressurized with 0.1 MPa
- □ 1x AUTOMATIC_SINCLE_SURFACE_MORTAR (balloon)
- □ 4x AUTOMATIC_SURFACE_TO_SURFACE_MORTAR (balloon to tube, 3x blades to balloon, IGAP=1)

9/19 STEP 3: FEA of pre-operative processes - FOLDING

- Membrane pressure (inner surface) p = -0.1MPa
- Computational time $t_{com} = 3h$, 38min, i7-6700k CPU, 4.00 GHz, 32 GB

NSOLVR	ILIMIT	MAXREF	DCTOL	ECTOL	<u>RCTOL</u>	LSTOL	ABSTOL
12 ~	5	0	0.0100000	0.0100000	1.000e+10	0.9000000	1.000e-06

^{10/19} STEP 3: FEA of pre-operative processes - PLEATING

Requirements

- □ Contact surfaces rotate around 10 vectors (0 0.015 rad, PRESCRIBED_MOTION_RIGID)
- \Box Shafts allow 2 DOFs (Ux, ROTx) to compensate longitudinal elongation
- □ 1x AIRBAG_SINGLE_SURFACE (balloon) to allow in-plane bending (MAT_RIGID, CON1=1)
- □ 1x AUTO_ONE_WAY_SURFACE_TO_SURFACE (balloon to tube)
- □ 10x SURFACE_TO_SURFACE (10x jaws to balloon, SOFT=1, IGAP=1)
- \Box d_{start} = 1,77 mm, d_{end} = 0,55 mm

¹¹/19 STEP 3: FEA of pre-operative processes - PLEATING

^{12/19} STEP 3: FEA of pre-operative processes - CRIMPING

Requirements

- □ Contact surfaces rotate around 12 vectors (0 0.015 rad, PRESCRIBED_MOTION_RIGID)
- Both shafts only allow 1 DOF (Ux) to compensate longitudinal elongation
- □ Very expensive to solve due to initial gap between stent and balloon
- □ 2x AUTO_SINGLE_SURFACE_MORTAR (balloon, stent)
- 14x AUTO_SURFACE_TO_SURFACE_MORTAR (12x blades to balloon, stent to balloon, balloon to tube, IGAP=1)
- \Box $d_{\text{start}} = 1,97 \text{ mm}, d_{\text{end}} = 1,10 \text{ mm}, d_{\text{recoil}} = 1,26 \text{ mm}$ (experiment: $d_{\text{recoil}} = 1,29 \text{ mm}$)

^{13/19} STEP 3: FEA of pre-operative processes - CRIMPING

^{14/19} STEP 4: FEA of stent DEPLOYMENT

Requirements

- \Box Only distal shaft allows 1 DOF (Ux) to demonstrate stent rotation
- **L** Expensive to solve due to sudden expansion and high deformations
- □ 1x AUTO_SINGLE_SURFACE_MORTAR (balloon). No single surface contact for stent
- □ 2x AUTO_SURFACE_TO_SURFACE_MORTAR (stent to balloon, balloon to tube, IGAP=1)
- \Box $d_{\text{start}} = 1,26 \text{ mm}, d_{\text{end}} = 3,67 \text{ mm}$ (experiment: $d_{\text{end}} = 3,65 \text{ mm}$)

^{15/19} STEP 4: FEA of stent deployment

mech

VALIDATION

16/19

- Very satisfying agreement of geometries and expansion mechanisms
- Details, such as dogboning, segment bending and asymmetrical segment expansion
- □ A realistic pressure/time behavior is difficult to replicate due to air pockets, sudden volume expansion and viscous fluid flow (contrast medium solution)

^{17/19} COMPARISON WITH CLASSIC APPROACHES

¹⁸/₁₉ FUTURE ASPECTS – WORK IN PROGRESS

Expansion caused by volume flow

- □ Realistic pressure/time behavior
- Asymmetrical stent expansion.
- □ LS-DEM (Discrete Element Method)
- □ LS-ICFD (Incompressible Computational Fluid Dynamics).

Anisotropic and thermomechanical material model for balloon membrane

- □ Heated folding / pleating blades.
- □ Injection blow molding causes an anisotropic material behavior.

More precise material damage and growth model for coronary arteries

- □ In vitro simulation of CSI.
- □ Correlation of mechanical response, structural damage mechanism and cell proliferation.
- Multi-scale material damage and growth modeling.
- □ FEA of stent deployment in long-term with a three-layer artery model.

Isotropic-kinematic hardening model

 \rightarrow Oberhofer G. et al: Numerical Analysis of the Balloon Dilatation Process Using the Explicit Finite Element Method for the Optimization of a Stent Geometry, LS-Dyna Forum 2006

¹⁹/19 ACKNOWLEDGMENT / FURTHER READING

Acknowledgment

We would like to show our gratitude to **Dr. Bernd Hochholdinger DYNAmore Swiss GmbH** for supporting this project with his expertise.

Further reading

- □ Geith MA, Sommer G, Schratzenstaller T, Holzapfel GA: Biomechanical and structural quantification of vascular damage: A unique investigation of stent implantation. Artery Research, 2017
- □ Wiesent L, Wagner M, Geith MA: Simulation of Fluid-Structure Interaction between injection medium and balloon catheter using ICFD. 11th European LS-DYNA Conference, 2017
- Holzapfel GA: Nonlinear solid mechanics: A continuum approach for engineering. John Wiley & Sons, 2000
- Wagner M: Lineare und nichtlineare FEM: Eine Einführung mit Anwendung in der Umformsimulation mit LS-DYNA, Springer Vieweg, 2017

