

Advanced numerical model for viscous friction between rough rubber and smooth ice

- Alessandro Scattina¹
- Riccardo Leonardi²
- Salvatore Scalera²

¹Politecnico di Torino, Dipartimento di Ingegneria Meccanica e Aereospaziale

²DYNAmore Italia S.r.l.

Contents

- Introduction
- Thermo-hydrodynamic formulation
- Numerical solution
- LS-DYNA model
- Simulation results
- Conclusions

Introduction

- The purpose of this work is to simulate the contact between the rubber of the tire and the ice using a FEM model during the transient phase (the first 10 ms of rubber-ice interaction)
- The transient phase is manly dependent on the micro-structural property of the rubber. For this reason this work follows a microscopic approach
 - The main problems which can affect the numerical simulation are:
 - The phase changing of the ice due the energy that comes from the friction \rightarrow instability and discontinuity in the E.O.S.
 - The dimensions involved \rightarrow high calculation time
- The LS-DYNA User Defined Friction was used to simulate the effects of the melting of the ice and the related hydrodynamic behaviours during the sliding of a rubber block

Macroscopic approach

Microscopic approach

Thermodynamic formulation

A smooth rubber block that is sliding on an ice surface with a velocity v, loaded with a nominal pressure p_{nom}

Thermo-hydrodynamic formulation

Considering the roughness of the rubber surface, the equation for the height of the liquid layer becomes:

$$\frac{dh(t)}{dt} = \frac{1}{\rho L} \left(\eta_w k \frac{v^2}{h(t)} - \lambda \frac{T_m - T_0}{(\pi \alpha t)^{0.5}} \right) - \frac{8}{3\eta_w} \frac{p_{nom}}{D_{asp}^2} h(t)^3 \chi_{(H_{s(t)} < H_v)}$$

hydrodynamic effects

Thermo-hydrodynamic formulation

- The first hydrodynamic effect is the **Squeeze-out** effect:
 - the water is squeezed-out by the pressure of the asperities. The water layer decreases
 - the amount of the squeezed-out water is evaluated by the formula $H_s(t) = \frac{8}{3\eta_w} \frac{p_{nom}}{D_{asp}^2} \int_0^t h(t)^3 dt$

Thermo-hydrodynamic formulation

■ The second hydrodynamic effect is the **Saturation** effect:

- the free surface of the rubber is filled by the water $H_s(t) = H_v$
- H_{v} depends on the material characteristics and is experimentally evaluated

Thermo-hydrodynamic formulation for the transient phase

Thermo-hydrodynamic formulation for the transient phase

Thermo-hydrodynamic formulation for the transient phase

Numerical Implementation

For the implementation in the subroutine, it is necessary to solve the differential equation
 Explicit Euler was chosen for the numerical formulation

Generic derivative function

 $\frac{dh(t)}{dt} = f(t)$

Incremental ratio

$$\frac{h_{j+1} - h_j}{dt} = f(t) + \varepsilon(t)$$

Numerical solution

$$h_{j+1} = h_j + dt f(t)$$

Phase 1
$$h_{j+1} = h_j - dt (K_3 h(t)^3)$$

Phase 2

$$h_{j+1} = h_j + dt \left(\frac{K_1}{h(t)} - \frac{K_2}{\sqrt{t}} - K_3 h(t)^3 \right)$$

Phase 3 $h_{j+1} = h_j + dt \left(\frac{K_1}{h(t)} - \frac{K_2}{\sqrt{t}} \right)$

LS-DYNA model

The numerical solutions are implemented in the subroutine which works in parallel with the LS-DYNA thermomechanical simulation :

LS-DYNA model

The simulation is composed by 2 phases:

1. pre-load phase (via dynamic relaxation):

- the rubber block is loaded by a nominal pressure
- after the rising of the equilibrium, a boundary condition for the velocity is assigned
- a constant value of friction coefficient is assumed

2. transient phase:

- the thermo-mechanical simulation and the user define subroutine work in parallel
- a non-stationary friction coefficient is the results of the rubber-ice contact interaction

Comparison with the reference results

Conclusions

- The transient value of the friction coefficient of the rubber-ice sliding contact was studied from a microscopic point of view
- The LS-DYNA UDF was used to simulate the effects of the melting of the ice and the related hydrodynamic behaviours during the sliding of a rubber block
- A good agreement with the literature results was obtained both for a load of 1 bar and 5 bar was obtained. A further investigation about material parameters will be necessary
- Future developments, in agreement with the customer's request, will be the possibility to include also the macroscopic hydrodynamic effects during the subsequent steady-state phase

The application of this methodology to a whole tire is the final step

Thank you for the attention

