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1 Abstract 

In the present work, a continuum modelling approach for the in-plane orthotropic elastic-plastic 
material behaviour of paperboard is combined with Continuum Damage Mechanics (CDM). Bulge 
experiments were performed, and the simulation results of the present approach are compared to 
*MAT_PAPER. A CDM formulation is used to account for softening effects and a numerical study is 

performed to assess the effect of damage evolution on the resulting strains in bulge test simulations. 
 

2 Introduction 

Paper and paperboard are commonly used in the printing, packaging and hygiene industry. But 
paperboard also offers notable mechanical properties [1] in combination with recyclability. Paperboard 
is already used in architecture where the most discussed works might be those of Shigeru Ban [12]. A 
reliable prediction of the material response is necessary when paperboard is used in engineering 
applications. Here, finite element simulations are a preferred tool in today’s CAE workflow. 
Paperboard can be described macroscopically as an orthotropic material. A high stiffness is obtained 
in the so-called machine direction (MD) as the fibers are preferably aligned into the direction of the 
manufacturing process. The perpendicular in-plane direction is called cross-direction (CD) and the z-
direction (ZD) is aligned normal to the paperboard plane. A number of continuum modelling 
approaches were already developed for paperboard, see e.g. [2, 3, 4, 5, 6, 7]. Some of them [2, 4] use 
the classical yield criterion presented in [8] originally proposed for polycrystalline materials. In [3] a 
yield criterion is suggested which under multiaxial loading [7, 11] shows reasonable model predictions 
where all necessary parameters were obtained experimentally from uniaxial tests. For further 
improvement of the simulation with paperboard materials, in the present work a modified approach is 
used to account for experimental results of bulge experiments. The model is extended using CDM and 
the CDM framework is presented here in detail.  
Paperboard is known to exhibit damage effects [2, 13]. Fig. 1 shows uniaxial tensile tests of samples 
tested in MD, which were pre-strained in CD, compared to reference experiments. A free span size of 
40 x 10 mm² was used at a thickness of 0.55 mm. To pre-strain the samples a large test specimen of 
300 x 60 mm² was loaded in CD until fracture occurred and from which the samples were cut out. 
Similar tests were performed in [21]. A set of five samples was tested after pre-straining. The elastic 
stiffness of the pre-strained samples is reduced by about 25 %. To account for multiaxial softening 
phenomena using a continuum modeling approach CDM is utilized in the present work. Bulge 
experiments were performed and the occurrence of damage and the influence on resulting strains in 
these tests is investigated by a numerical study. To overcome localization effects in numerical 
simulations a viscous regularization is used [22]. 
 

3 Continuum damage mechanics 

3.1 Notation 

In the following and according to Cartesian coordinates 2nd order tensors are denoted as 
 

𝐴 = 𝐴𝑖𝑗 �⃗�𝑖 ⊗ �⃗�𝑗 (1) 

 
and the scalar product of two 2nd order tensors is defined as 
 

𝐴: 𝐵 = 𝐴𝑖𝑗𝐵𝑖𝑗 . (2) 
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Fig. 1: Damage evolution due to pre-straining in lateral in-plane direction in comparison to 
undamaged samples. 

 
Forth order tensors are denoted by a double underline, e.g. 
 

𝐶 = 𝐶𝑖𝑗𝑘𝑙�⃗�𝑖 ⊗ �⃗�𝑗 ⊗ �⃗�𝑘 ⊗ �⃗�𝑙. (3) 

 

3.2 General Framework 

In the present work the virtual undamaged configuration is utilized which is a basic principle in CDM. 
The stress in this configuration is higher as no damage effects such as micro-cracking are present and 
the undamaged Young’s modulus is recovered. The transformation of stress to the virtual 
configuration is given as [14, 18]  
 

𝜎 = (1 − 𝐷)
−

1

2 𝜎 (1 − 𝐷)
−

1

2 
 (4) 

 

with the Cauchy stress 𝜎 acting in the actual material body, the 2nd order identity tensor 1 and the 2nd 

order damage tensor 𝐷. Quantities in the virtual configuration are in the following denoted with an 

overbar. Utilizing the orthonormal material coordinate system yields a damage tensor  
 

𝐷 = 𝐷𝑖 �⃗�𝑖 ⊗ �⃗�𝑖, 𝑖 = 1, 2, 3 (5) 

 
with a damage variable defined for each material direction. The material coordinate system will be 
used in the following as the reference coordinate system and necessary coordinate transformations 
should be performed in a preliminary step. 

Eq. (4) yields a symmetric stress tensor 𝜎 in the virtual undamaged configuration. To simplify further 

calculations a linear mapping with a 4th order tensor [15] is obtained from Eq. (4)  
 

𝜎 = 𝑀: 𝜎. (6) 

 

In matrix notation the so called damage effect tensor 𝑀 [18, 20] is given as 

 

𝑀 = 𝑑𝑖𝑎𝑔 ((𝜙1)2, (𝜙2)2, (𝜙3)2,
𝜙1𝜙2

2
,
𝜙2𝜙3

2
,
𝜙3𝜙1

2
)  (7) 

 

where 𝜙𝑖 = (1 − 𝐷𝑖)
−1/2.  

In the present work the strains in the actual and virtual configuration are assumed to be equal [16]. 
Other assumptions are also possible as e.g. an equivalence of total energies. Strain equivalence 
yields a simple damage and plastic iteration scheme as these iterations can be performed separately. 
Assuming strain equivalence yields 
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𝜀 = 𝑆𝐷: 𝜎 = 𝑆0: �̅� = 𝑆0: 𝑀: 𝜎 (8) 

 

where 𝑆 denotes the compliance and the superscripts 0 and D respectively denote an undamaged and 

damaged quantity. From Eq. (8) 𝑀 can be calculated as 

 

𝑆𝐷 = 𝑆0: 𝑀. (9) 

It is evident from Eq. (9) that this leads to a non-symmetric damaged compliance tensor. To overcome 
this issue a symmetrized damaged compliance tensor  

 

𝑆𝐷∗
=

1

2
[𝑆0: 𝑀 + 𝑀: 𝑆0] 

(10) 

 
is introduced [18] which consequently yields a new damage effect tensor 
 

𝑀∗ = 𝑆0−1: 𝑆𝐷∗
=

1

2
[𝑀 + 𝑆0−1: 𝑀𝑇: 𝑆0]. 

(11) 

 

3.3 Thermodynamics 

In the present work the strain energy of the damaged continuum is assumed as [16] 
 

𝜓 =
1

2
𝜀: 𝐶(𝐷∗): 𝜀 + 𝜎𝑝: 𝜀 + Ξ(α) 

(12) 

 
where the plastic stress 𝜎𝑝 is introduced as well as the plastic potential Ξ and 

 

𝐶(𝐷∗) = (𝑆𝐷∗
)

−1

. 
(13) 

 
By using the Clausius-Duhem inequality and applying standard arguments the Cauchy stress is given 
as  
 
𝜕𝜓

𝜕𝜀
= 𝜎 = 𝐶(𝐷∗): 𝜀 + 𝜎𝑝. 

(14) 

 
Multiplication of Eq. (14) with 𝑀∗ and by using Eq. (11) yields 

 

�̅� = 𝐶0: 𝜀 + �̅�𝑝 (15) 

 
where 𝜎𝑝 is the plastic stress in the virtual undamaged configuration. Eq. (15) shows that if plastic 

deformations are defined with respect to the undamaged configuration, calculations of resulting plastic 
stresses can be performed independently of damage effects. This results in a simple operator split for 
the numerical implementation [16] and is a major advantage of assuming strain equivalence. Energy 
equivalence would lead to coupled plastic and damage iterations. 
The thermodynamic driving force 𝑌 related to the internal damage tensor 𝐷 is derived by taking the 

partial derivative of the strain energy with respect to 𝐷 [17]: 

 

𝑌 = −
𝜕𝜓

𝜕𝐷
= −

1

2
𝜀:

𝜕𝐶(𝐷∗)

𝜕𝐷
: 𝜀. 

(16) 

 

3.4 Damage Evolution 

Similar to classical plasticity a damage potential is defined [17, 18] that controls the occurrence of 
damage: 
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𝑓𝑑 = 𝑌𝑒𝑞 − 𝐵 ≤ 0 (17) 

 
where 𝑌𝑒𝑞 is an equivalent scalar measure of 𝑌 and 𝐵 is the current damage threshold. An associative 

evolution of internal damage is used  
 

�̇� = Δ𝜆𝑑

𝜕𝑓𝑑

𝜕𝑌
= Δ𝜆𝑑

1

2𝑌𝑒𝑞

𝐿: 𝑌 
(18) 

 
where 
 

𝑌𝑒𝑞 = √
1

2
𝑌: 𝐿: 𝑌 

(19) 

 
with 𝐿 originally being defined as a fourth order tensor function of the 2nd order damage tensor 𝐷 to 

account for changes in damage surface shape [19] and the Lagrange multiplier Δ𝜆𝑑. In the present 

work 𝐿 is assumed to be constant to perform a principal investigation of damage evolution during 

multiaxial loading of paperboard. Further experiments will be necessary to determine a meaningful 
damage surface as well as its evolution for an exemplary paperboard material. 
By introducing the loading/unloading and consistency conditions as usually done in plasticity and 
relating 𝐵 to an internal variable 𝛽 by the simple relationship 
 
𝐵 = 𝐵𝑐𝛽 (20) 

 
where 𝐵𝑐 is a material constant, the Lagrange multiplier Δ𝜆𝑑 is calculated as 
 

Δ𝜆𝑑 =

1
2𝑌𝑒𝑞

𝑌: 𝐿:
𝜕𝑌
𝜕𝜀

𝐵𝑐 −
1

2𝑌𝑒𝑞
𝑌: 𝐿:

𝜕𝑌
𝜕𝐷

:
𝜕𝑓𝑑

𝜕𝑌

: 𝜀.̇  (21) 

 
Finally, the damage tangent stiffness (assuming �̇�𝑝 = 0) yields 

 

�̇� = [𝐶(𝐷∗) + 𝜀:
𝜕𝐶(𝐷∗)

𝜕𝐷
:
𝜕𝑓𝑑

𝜕𝑌
⨂ (

𝜕𝑓𝑑

𝜕𝑌
:
𝜕𝑌

𝜕𝜀
)] : 𝜀.̇  (22) 

 

3.5 Viscous Regularization 

To scale the damaged area to a more realistic width and reduce the mesh dependency, a Perzyna-
type regularization is performed [24]. The damage evolution is given as 
 

�̇� = 𝜂 < 𝑓𝑑 >
𝜕𝑓𝑑

𝜕𝑌 
 (23) 

 
where < ∎ > denote the Föppl bracket and 𝜂 is the viscosity parameter. Written in incremental form 
Eq. (23) is written as 
 

Δ𝐷 = 𝜂 < 𝑓𝑑 > Δ𝑡
𝜕𝑓𝑑

𝜕𝑌 
≡ Δ𝜆𝑑

𝜕𝑓𝑑

𝜕𝑌 
 (24) 

 
where the corresponding Lagrange multiplier is introduced together with the residual [25] 
 

𝑟 =
Δ𝜆𝑑

𝜂Δ𝑡
− 𝑓𝑑 (25) 

 
that is used within a Newton-Raphson iteration scheme to compute all required increments. The 
algorithm is given in section 3.6. 
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A simple example is presented to illustrate the regularizing effect of the present approach. Fig. 2 
shows the sample modelled with shells (ELFORM = 2) under uniaxial tension (see also Fig. 4 for the 

mesh). One element was weakened (A/A0 = 0.90) to achieve local softening.  
Fig.3 shows the results for implicit calculations of the bar example for different pseudo-viscosities. A 
low viscosity parameter retards damage initiation and leads to higher damage values over the whole 
bar (see η1 and η2). It must be pointed out that viscous damage regularization highly depends on the 
used time scale and the corresponding parameters must be determined specifically for each 
calculation, as can be seen for η3 to η5 in Fig. 3. Here the high viscosity retards the damage evolution 
in a way that during the calculation time the weakened element won’t be damaged completely. Further 
increase of viscosity leads to less damage when the termination time is reached. 
 

 

Fig. 2: Illustration of the bar example used with viscous regularization. 

 
The damage initiation threshold was set to zero for the numerical study because the impact of damage 
evolution on the bulge test simulation result is investigated. A quantitative representation of the exact 
damage levels necessitates the determination of a damage surface for paperboard based on  
 

 

Fig. 3: Damage evolution for different pseudo-viscosities. 

 
damage evolution measurements for different loading situations which is beyond the scope of the 
present work. Fig. 4 shows a contour plot of the damage variable D1 of the deformed bar for η = η1.  
 

 

Fig. 4: Exemplary bar fringe level of D1 for 𝜂 = 𝜂1 as shown in Fig. 3. 
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To obtain a more physically motivated approach for the introduction of damage, non-local quantities 
can be used [13]. As a modified global calculation is necessary, these models require a more 
sophisticated implementation as e.g. *MAT_NONLOCAL. 

 

3.6 Numerical Treatment 

The presented 2nd order damage approach is included in a user material subroutine in LS-DYNA by 
using a Newton-Raphson iteration scheme for implicit time integration. The iteration procedure is 
described schematically in Box 1. An operator split is used so that the plastic and damage iteration 
can be performed separately. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4 Experimental Setup 

Bulge tests with identic parameters to the numerical simulations were conducted. The test rig which is 
schematically depicted in Fig. 5 was developed by Huttel and Post [23]. In Fig. 5 a) the initial state and 
in Fig. 5 b) the state immediately before breakage is depicted. For a clear illustration, pneumatic 
cylinders and further test rig parts are not illustrated. Furthermore, the used optical measurement 
system GOM Aramis® is schematically depicted. To determine the elongations inline a stochastic 
pattern is required on the paperboard’s surface. Tests with and without the sprayed on pattern were 
conducted to investigate if the pattern influences the mechanical properties. Since both the pressure 
and the elongation at failure were identical with and without the pattern, any influence of the pattern on 
the mechanical properties can be excluded. In the detailed section in Fig. 5 a) a membrane beneath 
the paperboard is shown. The membrane is used to separate the porous paperboard from the 
pressurized air. To avoid any influence by the membrane the Young´s Modulus is significantly smaller 
(4 MPa) compared to paperboard (2000 to 7000 MPa). 

Box 1: Viscous damage iteration. 

1. Trial state: 

𝐷𝑛+1
𝑡𝑟𝑖𝑎𝑙 = 𝐷𝑛, 𝛽𝑛+1

𝑡𝑟𝑖𝑎𝑙 = 𝛽𝑛, Δ𝜆𝑑 = 0 

 
2. Check damage potential: 

𝑓𝑑 = 𝑌𝑒𝑞(𝜀𝑛+1, 𝐷𝑛+1
𝑡𝑟𝑖𝑎𝑙) − (𝐵0 + 𝐵𝑐𝛽𝑛+1

𝑡𝑟𝑖𝑎𝑙) 

IF: 𝑓𝑑 ≤ 0 

Set (∎)𝑛+1 = (∎)𝑛+1
𝑡𝑟𝑖𝑎𝑙 and EXIT 

END IF 
 

3. Compute residuals: 

𝑎 = −𝐷𝑛+1
𝑡𝑟𝑖𝑎𝑙 + 𝐷𝑛 + Δ𝜆𝑑

𝜕𝑓𝑑

𝜕𝑌
, 𝑟 =

Δ𝜆𝑑

𝜂Δ𝑡
− 𝑓𝑑 

 
IF: 𝑎 ≤ 𝑙𝑖𝑚𝑖𝑡 && r ≤ 𝑙𝑖𝑚𝑖𝑡  

Set (∎)𝑛+1 = (∎)𝑛+1
𝑡𝑟𝑖𝑎𝑙 and EXIT 

 END IF 
 
4. Compute increments: 

δ𝜆𝑑 =

−𝑟 +
𝜕𝑓𝑑

𝜕𝐷
: 𝑋−1: 𝑎

1
𝜂Δ𝑡

−
𝜕𝑓𝑑

𝜕𝐷
: 𝑋−1:

𝜕𝑓𝑑

𝜕𝑌
−

𝜕𝑓𝑑

𝜕𝛽

, 𝑋 = 1 − Δ𝜆𝑑

𝜕𝑓𝑑

𝜕𝑌𝜕𝐷
 

5. Update: 

𝛽𝑛+1
𝑡𝑟𝑖𝑎𝑙 = 𝛽𝑛+1

𝑡𝑟𝑖𝑎𝑙 + 𝛿𝜆𝑑 , Δ𝜆𝑑 = Δ𝜆𝑑 + 𝛿𝜆𝑑 , 𝐷𝑛+1
𝑡𝑟𝑖𝑎𝑙 = 𝐷𝑛+1

𝑡𝑟𝑖𝑎𝑙 + 𝑋−1: (𝑎 + 𝛿𝜆𝑑

𝜕𝑓𝑑

𝜕𝑌
) 

 
GOTO 3. 
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Per definition no material flow from the clamping is allowed. Therefore, a circumferential bead with a 
rough surface was provided in the clamping. Like in the numerical simulations the pressure increase is 
set to 0.1 bar/s.  
To account for material inhomogeneities a representative area around the point of maximum 
displacement is evaluated and the average MD and CD strain is computed.  
 

 

Fig. 5: Bulge test setup. a) Initial state, b) state immediately before fracture. 

 

5 Results and Discussion 

The final damage distribution for the chosen set of parameters is presented in Fig. 6 for the bulge 
simulation. The resulting strains in bulge experiments are shown in Fig. 7 together with simulation 
results using *MAT_PAPER and the present model with and without including damage effects.  

 

 

Fig. 6: Damage distribution in bulge simulation. 

 
From literature [26] it is known that a sudden increase in damage is present before rapture and the 
pre-rupture damage is of a moderate amount. It is assumed that most of the damage effects 
immediately before rupture are a localized phenomenon and do not influence the measured strain 
average significantly. Under these assumptions most of the strain is a result of plastic effects and 
softening effects have only moderate impact on the simulation results, as illustrated in Fig. 7. A 
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distinction between plasticity and damage effects for a complex material such as paperboard is difficult 
and the discussion here is restricted the simplified continuum representation of the material. Further 
experiments are necessary to determine the damage in bulge test experiments and refine the 
presented damage formulation. However, the present approach offers a tool to predict coupled 
damage and plasticity effects under complex loading without the need of non-local quantities. As 
already stated before it is important to point out that the viscous parameters must be chosen carefully. 
 

 

Fig. 7: Bulge test and simulation results. Damage distribution in bulge simulation. 

 

6 Summary and Outlook 

In the present work a modelling approach for the in-plane behaviour of paperboard was combined with 
CDM to investigate the influence of damage effects on bulge test simulations. The experimental 
results are represented well by the present approach, whereas *MAT_PAPER, that represents uniaxial 

tensile experiments well, was not able to represent the material behaviour in bulge experiments. It was 
found that most of the strain evolution can be contributed to plastic effects under the assumption that 
most of the damage evolution takes place just before material failure. To distinct damage and plastic 
effects for paperboard, elaborate experimental effort is necessary to enable for a prediction of material 
damage effects. A modification of the damage criterion is necessary for paperboard which will be the 
topic of further research. 
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