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Motivation 

Objective 

• In aerospace industry more and more detailed FEM models are used for prediction of 

engine behavior 

• Goal is the thermo-mechanical simulation of a 

running engine with almost no idealizations or 

simplifications over a time-span of a few seconds 

 

 

 

 

 

Dynamic models with millions of DOF 

• Many issues have to be solved (contact problems, 

modeling of bearings, hourglassing, efficient 

parallelization, model decomposition, time integration, 

…) 

 

What kind of time integration scheme should be 

used? 
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Motivation 

Implicit vs. explicit time integration 

  ttxfxx nnnn  ,1

• Equation of motion has to be integrated two 

times for solving the boundary value problem: 
       tFtKxtxDtxM  

Explicit time integration 

 txf ,x

tnt 1nt

1nx

nx

nn xx 1

Implicit time integration 

• For simplicity we assume to solve the equation                  by:  txfx ,

  ttxfxx nnnn   111 ,

E.g. Euler-Forward method: E.g. Euler-Backward method: 

 txf ,x

tnt 1nt

1nx

nx

nn xx 1

Known quantity 

Unknown quantity 

Solution has to be determined 

by solving linear or nonlinear 

equations (e.g. by Newton 

iterations) 

Because of Newton iteration and therefore computation of “exact” function value at tn+1 with 

implicit time integration much bigger time steps are possible than in an explicit time integration! 
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Motivation 

• Implicit time integration algorithms can be constructed such that they are 

unconditionally stable (solution will not grow uncontrolled for arbitrary big 

time steps) 

• Explicit time integration algorithms are only conditionally stable (solution 

will grow uncontrolled for too big time steps) 

• For aero-engine models the critical time step for an explicit analysis is in the 

order of 10-8s 

• Due to these extremely small time steps, e.g. analysis of contact behavior is 

much simpler 

• But since even the explicit analysis of 40ms of engine model takes a few 

weeks on thousands of cores, the explicit analysis is not an option for 

the simulation of a running engine over a few seconds 
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Instability Problem of Implicit Time-Integration 

Implicit Simulation of Spinning Plate with Newmark algorithm 

Model: Load curve: Simulation: 

• Newmark algorithm becomes instable with standard parameters 

• Change of parameters improves situation but new parameters are only valid for particular problem 
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Analytical solution 

Explicit, time step 3.48e-7 

Implicit, time step 1e-4 (const), gamma=0.5, 
beta=0.25 (classical Newmark) 

Implicit, time step 1e-3 (const), gamma=0.5, 
beta=0.25 (classical Newmark) 

Implicit, time step 1e-3 (const.), 
gamma=0.55, beta=0.2756 
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Instability Problem of Implicit Time-Integration 
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Analytical solution 

Explicit, time step 3.48e-7 

Implicit, time step 1e-4 (const), gamma=0.5, 
beta=0.25 (classical Newmark) 

Implicit, time step 1e-3 (const), gamma=0.5, 
beta=0.25 (classical Newmark) 

Implicit, time step 1e-3 (const.), gamma=0.55, 
beta=0.2756 

Implicit, NEWMARK-EULER, time-step 1e-3 
(const), standard parameters 

• Literature suggests more advanced time-integration methods like Newmark-Euler: 

• Newmark-Euler works better than classical Newmark algorithm but also becomes 

instable in certain situations (automatic time-step control is used): 
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Reasons for Appearance of Instabilities 

• Under certain conditions 

(depending on model 

stiffness and time-step size) 

more than one equilibrium 

solution can appear 

• Newton or Quasi-Newton 

algorithm converges into this 

“wrong” equilibrium state 

Correct solution Converged solution 

fx 

xn+1 

t =0.01s 

k=1e7 N/mm 

t =0.001s 

k=1e7 N/mm 

t =0.01s 

k=1e5 N/mm 

[1] Kober, M. und Kühhorn, A. (2018): Stable implicit time-integration of 

flexible rotating structures - explanation for instabilities and concepts 

for avoidance. Applied Mathematical Modelling, Volume 60, pp 235-

243. 

 

x 

y 

F 

• Number of equilibrium solutions is influenced 

by time-step size and model stiffness 

• Instabilities can be detected/avoided by 

improved time-step control 

• For details please refer to [1] 
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Complex FEM Example 

• In general Newmark-Euler (or Composite) time-integration suffers the same instability 

problems like Newmark time-integration 

• But numerical situation for Newmark-Euler scheme is slightly better and it is a bit faster 

for rotating structures (additional advantage of damping of higher frequencies) 

 

• Complex FEM example consists of a simplified turbine model including contact in the 

bearing region, which is loaded by pressure on the blades 
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Due to numerical damping of time-integration algorithm the rotational velocity is 

decreasing 
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Stability Considerations of Time-integration 

Algorithms 

• Stability analysis is useful to discover possible weak points of an integration algorithm 

and to show the borders of its applicability in terms of stability 

• Many time integration methods (e.g. Newmark, Newmark-Euler) can be written in the 

form 
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A =  Matrix of integration approximation 

L = Load operator 

r = External load 

• Matrix A depends on the time integration method (and the mechanical problem), that is 

used 

• An integration method is stable if the spectral radius of the matrix A (depending on 

t/T) is always smaller or equal than 1 

Spectral radius of A:   3,2,1,max  ii A

Stability criterion:   1A

• For stability analysis it is sufficient to consider a 

simple undamped free vibration problem: 

02  xx  => r = 0 
x 

k 

m 
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Stability Considerations of Time-integration 

Algorithms 

• With T = 2p/ = 1 it is possible to compute a stability map (plot of spectral radius over t/T): 
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Stability Considerations of Time-integration 

Algorithms 

Stability Map of Newmark-Euler algorithm 

• With T = 2p/ = 1 it is possible to compute a stability map (plot of spectral radius over t/T): 
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) Area of conditional 
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the time step size) 
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Curve for a=0.5, g=0.5, b=0.25 

(“classical” Newmark-Euler with standard 

parameters) 

Strong damping of higher 

frequencies but also small damping 

for lower frequencies 
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Optimization of Newmark-Euler Parameters 

Design parameters 

• Newmark-Euler parameters 
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Complex FEM example 

Solution with optimized Newmark-Euler parameters 

• Solution with optimized parameters stays stable 

• Numerical damping in interesting regions is reduced 
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Summary 

• Instability issues of implicit simulation of flexible rotating structures are solved 

• Newmark-Euler (Composite) time-integration seems to be advantageous for 

the simulation of rotating structures compared to classical Newmark time-

integration 

• Numerical damping of Newmark-Euler scheme can be reduced by 

optimization of parameters 

• Optimized parameters/change of parameters should be handled with care 

(Computation of stability map very useful) 

• Simulations with optimized Newmark-Euler parameter set led to stable results 

with improved accuracy 
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