Author(s) Session ID

Recent Developments in LS-DYNA – Part I

Presented by Jason Wang, Pierre L'Eplattenier, Facundo Del Pin

12th European LS-DYNA Conference 2019 14-16 May 2019 in Koblenz, Germany

Outline

Introduction

Scalable Technologies

- HYBRID
- Rebalancing

Multi-Physics, Multi-formulations, Multi-scale, Multi-stage

- SPH/CPM Methods, Thermal Radiation, NVH and Fatigue
- Electromagnetics
- ICFD

LS-DYNA | Applications

Development costs are spread across many industries

Aerospace Bird strike Containment Crash

Stamping Forging Welding

Electronics

Drop analysis Package analysis Thermal

Defense

Weapons design Blast and penetration Underwater Shock Analysis

Biosciences

LS-DYNA | One Code, One Model

Single Model for Multiple Disciplines – Manufacturing, Durability, NVH, Crash, and FSI

Multi-Physics and Multi-Stage Structure + Fluid + EM + Heat Transfer Implicit + Explicit

Multi-Scale Failure predictions, i.e., spot welds

Multi-Formulations

Linear + Non-Linear + Peridynamics + ...

LSTC Organizational Structure

LS-DYNA | Strong Coupled Multi-Physics Solver

Computers capable of multi-physics simulations are becoming affordable. Scalability is rapidly improving for solving multi-physics problem.

Meng Session E7-3

12core/2socket 4 nodes clusters

Enhance efficiency – DECOMPOSITION_REDECOMP

Yreux, Tsay, Wang Session E7-2

Enhance efficiency - Dynamic Load Balancing

- Modifies decomposition during execution based on actual element timings
- Transfers elements and model features between processors directly via MPI
- Still in early stages of development

SPH

É.

Yreux Session D3-1

MLS-Based formulation 12

- Quasi-Linear Moving Least-Squares formulation for accuracy and consistency
- Stabilized nodal integration for better stability
- More CPU-Intensive than regular SPH
- Fluid Formulation 15
 - Density smoothing
 - Murnaghan Equation of State for weakly compressible modeling
 - Low artificial viscosity

Implicit Formulation 13

- Implicit, incompressible SPH formulation allows larger time step size
- Tailored for wading-type problems
- Example with 9.1 million particles

Blender rendering

CPM | CAB Performance Improvement

- OpenMP (HYBRID) enabled
- Reduced amount of data transferring between processors for better scaling
- More efficient particle to fabric contact algorithm
- Same input faster turn around time

Thermal Radiation (MPP)

Extended MPP implementation to reduce wall clock time and memory requirements and to couple with fluid and other solvers.

- Applications are, for example, drying and curing processes.
- Example: B-pillar part gets heated up in an oven

Blankenhorn, Grimes, Rouet, Gandikota, Gysei, Malcom Session H2-1, H2-3

Animation (temperature)

View factor visualization

NVH and Fatigue solvers

Huang, Cui Session H7-1, H7-3

sound1.wav

Vibration solvers

- Frequency Response Function
- Steady State Dynamics
- Random Vibration
- Response Spectrum Analysis
 DDAM

Fatigue solvers

- Random Vibration Fatigue
- **SSD** fatigue
- Time domain fatigue
 - Stress based
 - Strain based

Acoustic solvers

- Boundary Element Method
 - Collocation
 - Indirect
 - *Rayleigh Method*
 - *Kirchhoff Method*
- Finite Element Method
- Acoustic Eigenvalue Analysis
- Statistical Energy Analysis

Applications

- NVH analysis of automotives and airplanes
- Civil and hydraulic Engineering
- Earthquake engineering
- Acoustic simulation
- Fatigue and durability

Electromagnetics

Pierre L'Eplattenier, Iñaki Çaldichoury

- Battery abuse
- Resistive heating Resistive spot welding
- Cardiac simulations

Battery abuse

Battery – Introduction

- Battery safety has been a key focus in design of electrified vehicle as battery size continues to increase.
- Understanding battery behaviors under abuse conditions is important to optimize the battery design.
- Computational modeling provides a tool to reveal the root causes of battery failure and evaluate its safety metrics.
- The models can also be used to check battery behavior in different "normal" operating conditions (Charge/discharge cycles, heating, ...)

Battery – physics

Whole range of length (10's µm to 10's cm) and time (ms to mn-hours) scales

Battery : 4 models depending on the scale / detail

- Solid elements: cell, internal/external shorts
 - All the layers are meshed using solid elements
 - Same mesh used for mechanics, thermal and EM
 - Cautious with mechanics (element formulation, large aspect ratio, small time step)
- Composite Tshells: cell/module, internal/external
 - Mechanics modeled using composite Tshells
 - EM and thermal use underlying solid mesh
 - More accurate detailed deformations
 - Faster runs (less elements, larger time step)
- Battery Macro model (BatMac): pack/battery, internal/external
 - One (or a few) solid elements through thickness for mechanics, EM and thermal
 - 2 fields at each node (positive and negative current collectors)
- Meshless model: module/pack/battery, external
 - One single equivalent circuit for the whole cell (lumped model)

Battery: BatMac example (1)

New "BatMac" solver for large number of cells, up to full battery in a car crash, internal/external shorts

10 cells module impacted by a sphere using BatMac: Runs in minutes, 20 times faster than composite Tshell model

Current density

Temperature

Battery: BatMac – Example (2)

50 cells module impacted by a plane

- 12,000 elements
- runs in 30 mn on 4 CPU's

Internal short + exotherm. reaction

Internal short

Impact by a moving plane

More details on Batmac in talk in "Electric vehicle I" session Wednesday afternoon

Temperature + current density

Resistive Spot Welding

Resistive heating solver: new features

- Solids+shells+beams
- New EM Contact (Mortar)
- Contact resistance
- Coupled with thermal solver
- MatDeath, erosion

Resistive spot welding

Electrodes on each sides of 2 sheets to be welded :

- Pressure
- Current flow => Joule heating => formation of a molten weld nugget
 Coupled mechanical/EM/thermal simulations in **3D or 2D (axi/planar)**

Resistive spot welding

New model in LS-DYNA for local contact resistance

depending on local parameters, using *DEFINE_FUNCTION, e.g. Jonny-Kaars model :

$$r(T,P) = r_0 \left(\frac{p - p_k}{p_0 - p_k}\right)^{\varepsilon_p} \cdot \left(\frac{T - T_{\lim} + (293, 15 \ K - T) \cdot 2^{-\frac{1}{\varepsilon_T}}}{293, 15 \ K - T_{\lim}}\right)^{\varepsilon_T}$$

2D axi-symmetric

3D (small slice of the full model)

Cardiac electro-physiology

Heart simulation

The heart is a complex bio-mechanical pump:

- Electrical impulses create wave of excitation, which propagates through the heart: ElectroPhysiology (EP).
- It initiates the contraction of the cardiac cells: Mechanics
- Which pumps the blood to the body: FSI

Our goal: coupled EP-Mechanical-Fluid heart simulations in LS-DYNA

Heart electrical system

Heart Modeling: EP+Mechanics+FSI

Ventricle with EP+Mechanical+ICFD:

- Help diagnostic (ECG)
- Understand abnormal heart beat, arrhythmia
- Assist therapy planning (medicine, pacemaker, surgery, ...)
- Shear stresses on the valve walls
- Hydrodynamic loads on medical devices like pacemakers
- Flow rate in and out of heart cavities
- Recirculation areas

Blood flow through artery from FSI

ICFD Recent Developments

Facundo Del Pin Iñaki Çaldichoury Rodrigo R. Paz Chien-Jung Huang

External Flow

Internal Flow

Free Surface and Sloshing

Reza ISSA and Damien VIOLEAU. SPH European Research Interest Community. Test-case 2, 3D dambreaking. Electricite De France,

Fluid Structure Interaction (FSI)

Thermal Analysis

New Features

Sliding mesh

Model the full domain near the turbine. Results in a large mesh but most accurate. Use sliding mesh or non-inertial reference frame.

Model a cylinder that contains the turbine. Results in a smaller mesh but less environment effects. Use sliding mesh or non-inertial reference frame.

Model a third of the cylinder that contains the turbine. Even a smaller mesh. Take advantage of repeating pattern in the flow. Use non-inertial ref. frame with periodic boundary conditions.

Model a third of the cylinder that contains the turbine. Even a smaller mesh. Take advantage of repeating pattern in the flow. Use non-inertial ref. frame with periodic boundary conditions.

Porous Parachutes and Membranes modeling: an FSI approach.

- 2D and 3D FSI porous/permeable parachutes and membranes modeling,

- Pressure drop through the fabric thickness is modeled as $\frac{\partial p}{\partial n} = \alpha (u * n) + \beta |u| (u * n)$.

- $\alpha = f(\mu, \kappa)$ and $\beta = f(\rho, \epsilon, \kappa, F)$. Where μ, ρ, ϵ, F is the fluid dynamic visc., the fluid density, the fabric porosity and the Forchheimer Factor, respectively.

- A flexible user interface to define the porous parameters through *ICFD_MODEL_POROUS keyword and Porous Model IDs =8,10 and 11.

Wave Generator for Free-Surface Flows

- A complete set of 2D and 3D Regular and Irregular wave shapes for deep/intermediate/shallow water flows:

- 1st, 2nd and 5th Stokes waves,
- Solitons (Tsunami-like waves),
- Irregular Ocean waves (JONSWAP spectrum).
- Wave absorption/damping and FSI capabilities.

LSPP pre-processor Multi-Solver menu

Activities 🖾 Terminal 🔻	Tue 07:47	🗶 🐠 🗘 ▾
	LS-PrePost(R) V4.7.0 (Beta) - 23Feb2019-64bit ATIONS/GERMANY19/intro/videos/new/LSPP/pre/i_ansa_ext_aero.k	
File Misc. View Geometry FEM Application Setting	gs Help	
Multiphysics Solution		٠
	y 1 arts	Q 2
■ Z Assembl ■ Z Assembl ■ Keyword E L Befine	ntity	* 4
		۹ ک
		17.021
		()
		(Q)
		<pre>MS</pre>
		0
Property Explorer		8
		(0 1
		EB
		*
		
		4
		2000 2000 2000
		A Constant
	a 😭 🏟 🏟 🍄 🏟 🏟 🍘 🏟 🖌 🗸 U. 😭 📦 🎭 🐨 🖉 🗄 🖾 🍃 🕀 🧐 🎯 🗢 🔹 🖄 🎽 🖏 🦓 🖾	
Solution 🗱 MSPost	quat 0.201179 -0.607441 -0.732285 0.233025;	
Annotation		Fast Renderer

LSPP **post**-processor Multi-Solver menu

Activities 🖾 Terr	ninal 👻		Wed 07:58 LS-PrePost(R) V4.7.0 (Beta) - 23Feb2019-64bit /net/barstow_1/fdelpin/runs/lsopt_ansa_car/d3plot	¥ 10 U +
4SPost Explorer Objects				
 Model Model MS_SHEL 	L GROUP		17 Post	lso V
✓	dry_0001_1			間 4
✓ cfd_bc ✓ cfd_bc				R Q
✓ cfd_bd				
✓				-
▼				
✓ iii MS_SC				
		_		11
	Ione Rever	se		6
Object Properties				(hat
				M
Display Options Mode	Shade		Eigen First: 1 Last: 9 Inc: 1 Time: 6 State: 1	
Transparency	0	-		
Fringe		1		
Color by	PID		305	
PID Color	(30,30,30 Magnitude)		
Component Fringe Contour		_		
Line Contour		_		
Fringe Legend				
Horizontal Legend	d 🗌			
Fringe Levels	10			
Min Scalar	0	_		
AVG Scalar	0	Ē	š @ @ @ @ @ @ @ @ @ @ ◆ → U. 😭 ¥ \$? II	
olution MSPost	٤		bgstyle plain	19
orward				Normal Render

- For models and examples visit: <u>www.dynaexamples.com/icfd</u>
- For movies showing more capabilities visit: https://www.youtube.com/user/980LsDyna

More details: tomorrow Wednesday at 8:30 session Fluid Structure Interaction

Thank You

Recent Developments in LS-DYNA – Part II

Presented by

Tobias Erhart, Thomas Borrvall

Thank you!

12th European LS-DYNA Conference 2019 14-16 May 2019 in Koblenz, Germany

Thank you!

LS-DYNA[®] LS-PrePost[®]

LS-OPT[®]

LS-TASC[®]

Dummies & Barriers