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Abstract:

The stability of seats, seat-belts and seat-belt anchorages of vehicles are very important for the passen-
gers’ safety during an accident. Therefore, dedicated safety tests have to be passed in order to ensure
a correct functionality of those parts. These tests are defined in the European regulation ECE-R14 in
detail, whereas crashing loads are substituted by appropriate pulling forces on the seat-belts.
The complete configuration is designed, simulated and tested with certain (physical) parameters (geo-
metry, materials, testing conditions, ...) which are assumed to be constant. In reality, most of these
quantities may vary and take other values with appointed probabilities. Generally, different values for the
design parameters will cause a variation in the simulation or testing result, which will also occur with
a certain probability. Thus the results of arbitrary separate investigations are commonly not meaningful
enough because their probability of occurrence is unknown.
The determination of this probability is part of a robustness investigation. In this paper the Monte Carlo
Analysis as a very simple method is applied to a FEA model observing ECE-R14. Additionally, the iden-
tification of each parameter’s importance for the simulation or testing result is a main topic. This is done
by means of a linear correlation analysis, which is described in section 3 in detail.
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1 Introduction: Robustness Investigation and Monte Carlo Analysis

1.1 System Behavior due to Parameter Influence

Generally, system behavior depends on the influence of underlying parameters: For instance the elastic
elongation of a pulled tensile bar is directly controlled by its cross-sectional area. This is a pure deter-
ministic dependency. In the case of a pushing load the parameter’s influence on the system is more
complex because buckling modes my also occur. If the buckling direction of a ideally double-symmetric
bar is investigated, the buckling direction can not be controlled by varying geometric parameters like
sheet thickness or bar length. Those parameters may just control the occurrence itself in a deterministic
way, but the buckling direction behaves completely chaotic. In most practical cases both deterministic
and chaotic behavior occur.
Parameter values of a physical system are mostly not constant at all: As an example, the thickness of
sheet metal varies statistically around a nominal value which is used for dimensioning of a structure.
This is equal to an uncontrolled parameter variation, which influences the system behavior in a more
or less deterministic and/ or chaotic way. Therefore, the behavior of a (physical) system as described
above is usually not constant, so it may vary statistically, too.

1.2 Robustness Analysis

In the following, the system behavior is more precisely described as a set of system responses (e. g.
bar elongation, velocity, acceleration, ...). System responses are often directly restricted with respect
to a certain criterion, thus a statistical variation of a response may cause failure of the system. Any
variation of a parameter or a response can be described by a statistical distribution. If the exact statistical
distribution of each considered response is known, an exact probability of failure can be computed. In
the case of a reliable system the probability of failure is smaller than a maximum given value.
Robust systems have ideally just a small range in their relevant responses, so the system behavior itself
varies just in a permitted bandwidth statistically. Therefore, two different criterions characterize a robust
system:

- System responses are mainly independent of statistically uncertain parameters.

- In analogy to the pushed tensile bar, the system has also just a minimum of buckling modes, so its
responses are mainly unique.

Therefore, a robustness analysis includes primary the estimation and analysis of the statistical distribu-
tions of all relevant parameters and, upon that, of all relevant responses. ”Relevant“ indicates that just
the most important quantities can be considered in most practical applications.
An analysis of a statistical distribution may be done basically by computing characteristic terms like relia-
bility, mean or variance. Furthermore, the influence of each parameter on each system response may be
investigated using correlation coefficients. In the case of linear correlation coefficients, this also allows
the identification of the system responses’ (physical) sensitivities with respect to the parameters.

1.3 Monte Carlo Analysis

Robustness itself is based obviously on statistical principles, so a detailed investigation has to utilize an
appropriate method. The Monte Carlo Analysis is a very simple and universal statistic-based instrument,
which is very useful for solving complex problems of any kind. It is not limited just to statistical problems,
but its effectivity depends always more or less on the type of application.
Each probability distribution represents the distribution of a population. In the case of a discontinuous
or ”stepwise“ distribution a population may have just a finite number of possible values for the observed
quantity unlike a continuous distribution always bases on a infinite number. The latter is the usual case.
The Monte Carlo Analysis tries to approximate arbitrary probability distributions by selecting just a sub-
set of the entire population, which still represents the original distribution approximately. The elements
of this subset may be interpreted as samples of the entire population, so they are called samples or
experiments, generally.
Hence, each parameter of the investigated system, varying around a nominal value, may be substituted
by a specific number of experimental values in order to describe its statistical distribution approximately.
The more experiments are used the more accurate can the exact probability distribution be described.
Generally, parameter values may be selected arbitrary and weighted with an additional factor in order to
approximate the exact distribution in a feasible manner. More practical is a ”direct“ appropriate allocation
of the parameter values, so the experiments have not to be weighted additionally (Markov Chain). The
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most popular method for the latter case is the Latin Hypercube Sampling [6], [7], which distributes the
values of each parameter in a half-structured way. The values of the different parameters are combined
either randomly or via an optimization algorithm in order to generate a good multidimensional spreading
(generally not necessary). Therefore, the values of every combination of two parameters are expected
to be uncorrelated.
In a next step, the system is investigated by using the Monte Carlo experiments: If parameters have an
influence on the system behavior or the system behavior itself is not completely unique, the responses
will also follow stochastic distributions. These are consequently just approximations to exact distribu-
tions, which could be found by considering the entire population. In most practical cases, uncertain
physical quantities own an infinite number of possible values so this will be quite impossible.
The approximations to the exact distributions can be used for computing several derivated quantities like
reliability, mean or spreading (variance, standard deviation) of the responses. As mentioned above, the
experiments are just a representative subset of the entire population. The choice of another subset would
(probably) cause different distributions of the responses. Therefore, the value of any derivated quantity
is an estimation to an (unknown) exact value. Due to the validity of the law of large numbers, the resul-
ting quantity values out of any observed subset will converge with increasing number of experiments to
the exact values. The uncertainty, caused by using a small subset, can be incorporated by computing
appropriate confidence intervals for each derivated quantity. These intervals are based just on statisti-
cal fundamentals and depend not on the number of observed parameters. The law of large numbers is
represented by decreasing confidence interval widths for an increasing number of experiments.
The definition of a confidence interval also needs the specification of a statistical certainty for expecting
the exact value inside it. As an example, for a certainty of 90% and multiple Monte Carlo Analyses the
exact value of a quantity will lie inside the confidence intervals in 90% of all analyses.

2 ECE-R14

2.1 Regulation

ECE-R14 is an European regulation which contains uniform provisions concerning the approval of ve-
hicles with regard to safety-belt anchorages. In this paper ECE-R14 is applied to a commercial vehicle.
There are several different restrictions defined in the regulation whereas just two of them are critical for
the investigated model and the considered seat row. They are shown in Fig. 2.1: One end of each seat’s
upper safety-belt is mounted on top of each seat back (J). The motion of these anchorages as a result
of predefined quasi-static pulling forces, applied to the safety-belts, is limited to a given permitted area
(shaded). During the development stage, forces are usually increased by a given percentage in order
to ensure the validity of testing or simulation results under ECE-R14’s testing conditions. Those harder
conditions will result in a larger probability of failure.

distance

C−plain
distance

J

C

10°
450mm

10°−plain

R

Fig. 2.1: Restrictions to the upper seat-belt anchorages J
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2.2 Analysed FEA Model

Due to large nonlinearities, mainly caused by contacts, the simulation of the seat pull test is performed
using LS-DYNA with explicit time integration scheme and limited time-step size [5]. In order to limit com-
puting time, the (physical) simulation time is strongly reduced to a minimum, so it is no longer quasi-static
rather highly dynamic.
The original design of the investigated vehicle and seat row, shown in Fig. 2.2, complies with the re-
quirements in an exemplary single test and simulation. In order to achieve more detailed information
about this conclusion, the Monte Carlo Analysis is applied to the FEA model using the Latin Hypercu-
be Sampling, implemented in LS-OPT [10]. In order to achieve a maximum accuracy for the probability
distributions and all derivated quantities, a large number of experiments has to be performed. In this
application N = 200 experiments are aspired while the FEA model comprehends a comparatively large
number of elements. In order to reduce computing time considerably, the original FEA model is reduced
to a minimum of elements (about a third of the original model) by replacing selected areas of the struc-
ture by appropriate boundary conditions. These are time-dependent and can be found by simulating the
complete model (Fig. 2.3): The data for the specified interface are written to a file that will be integrated
in the stripped-down model as boundary conditions for all further simulations.

2.3 System Responses

Meaningful system responses are found directly from Fig. 2.1 by observing the distances from the belt
anchorages to the restrictions. It turns out that just the restriction ”distance 10◦-plain“ (d10◦-plain) is viola-
ted during the analysis. On the other hand, the simulation time is too short in some cases because the
anchorages are still in motion (dynamic simulation) as a result of certain coincident parameter variati-
ons: As a consequence it is not possible to rate wether one of the geometric restrictions may be violated
at a later time. Restricting the velocity along the longitudinal axis at the end of the simulation (vx,end)
seems to be necessary, because a longer simulation time for each experiment should be prohibited. Ex-
periments, which fail at this restriction, can now be rated as failed (simplest method) or evaluated again
separately for a longer simulation time, afterwards (”correct“ method). Before starting the Monte Carlo
Analysis, the influence of the parameters is not known yet, so it is impossible to determine a sufficient
long simulation time for all of the experiments. On the other hand, a short computation time is aspired
generally, so restricting the velocity is a feasible way to handle this problem.

2.4 Parameters

Investigated parts and (out of that) parameters are shown in Fig. 2.4: As mentioned above, the influence
of any parameter in the model is not known yet, so a preselection has to follow mostly subjective as-
sumptions. Additionally, the number of significant parameters should not be too large, if their influence
will be investigated in a correlation analysis afterwards. The more significant parameters are used at a
given number of experiments, the less meaningful are the correlation coefficients as demonstrated in
sec. 3. Due to this, it is aspired to limit this number, but at the same time the investigation of a broad
bandwidth of parts and parameters is needed for computing ”realistic“ probability distributions of the
responses. As a compromise, there are just two parameters selected for each part: The sheet thickness
(Th.) and the yield stress (YS) seem to be a fairly good choice. Additionally, variation of the Young’s Mo-
dulus and the coefficients of friction are investigated for all parts simultaneously by scaling their mean
values for different materials. Variation of the pulling forces may also have a significant influence on the
system responses.
A total of n = 43 parameters is varied in this analysis. All parameters are assumed to be normally dis-
tributed except the pulling forces (equally distributed). The mean values and standard deviations are
obtained out of measuring data.

2.5 Evaluation

2.5.1 Probability Distributions

The scatter of the N = 200 Monte Carlo experiments (Latin Hypercube Sampling) is exemplarily shown
in Fig. 2.5 for a material thickness vs. a yield stress. Parameters are independent among each other, so
ideally there shouldn’t be identifiable any directions or structures in the distribution of the experiments.
After evaluating the experiments, system responses can be plotted vs. parameter values. As an example
the response ”distance 10◦-plain“ is plotted vs. the pulling forces in Fig. 2.6. Due to obviously existing
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Fig. 2.2: Complete FEA Model Fig. 2.3: Reduced FEA Model with boundary
conditions
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Fig. 2.4: Investigated parts
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Fig. 2.5: Experiments displayed for two para-
meters (Th. = sheet thickness, YS =
yield stress)
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Fig. 2.6: Experiments displayed for a para-
meter vs. a response

parameter influence, an orientation of the experiments is now clearly visible. Because Monte Carlo ex-
periments represent in this case an infinite large population, the distribution approximates the unknown
exact probability distribution. This can be shown in histograms, which display the numbers of system
responses belonging to certain intervals (Fig. 2.7 and 2.8). For comparison, a normal distribution based
on the responses’ mean and standard deviation is plotted, too. The more experiments are used the more
”continuous“ can the distributions be displayed (approximation quality also increases).

2.5.2 Quantities and Corresponding Confidence Intervals

The determination of several quantities and (additionally) appropriate confidence intervals allow a nu-
merical characterization of the distributions [3], [4], [8]:

- Mean of N responses yi:

y =
1
N

N∑
i=1

yi (2.1)

The determination of the dedicated confidence interval requires the knowledge of the type of the
error’s probability distribution. Generally, this is unknown so an appropriate approach has to be do-
ne, whereas the assumption of a normal distribution is a common choice. In this case half of the
confidence interval is given by
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Fig. 2.7: Histogram for the distance to the
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Fig. 2.8: Histogram for the final velocity
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∆yN = t(1−α
2 ,N)

σN√
N

(2.2)

with σN as the estimated standard deviation of a standard normal distributed population (see below)
and t(1−α

2 ,N) = −t( α
2 ,N) as the quantile of the Student’s Distribution as a function of the probability of

falsity α. The (symmetric) confidence interval for the exact mean value µN is:

yN −∆yN ≤ µN ≤ yN + ∆yN (2.3)

Generally, the error caused by the assumption of a normal distributed error decreases very fast for a
increasing number of experiments N .

- Variance σ2 (standard deviation σ) of N responses yi:

σ2 =
1

N − 1

N∑
i=1

(yi − y)2 (2.4)

The determination of the confidence interval suffers from the same problem as before (mean value):
An assumption for the unknown exact probability distribution of the error is needed. For a normal
distribution, the lower and upper interval bounds are

σ2
N,1 = (N − 1)

σ2
N

χ( α
2 ,N−1)

, (2.5)

σ2
N,2 = (N − 1)

σ2
N

χ(1−α
2 ,N−1)

, (2.6)

with χ(1−α
2 ,N−1) as the quantile of the chi-square distribution. So the (non-symmetric) confidence

interval for the exact variance σ̃2
N is:

σ2
N,1 ≤ σ̃2

N ≤ σ2
N,2 (2.7)

- Probability of failure for K responses which do not exceed any constraint at a total number of N
responses (Maximum Likelihood Estimation):

P =
K

N
(2.8)

The confidence interval for this quantity doesn’t need further information about the distribution of the
responses. It is based on the approximation of a binomial distribution, which describes the statistical
relationship between P , K and N in eq. 2.8, by a normal distribution. This is allowed if the following
heuristic constraint is fulfilled:

P N ≥ 10 ∨ (1− P ) N ≥ 10 (2.9)

Then the upper and lower interval bounds are:

P1,2 =
2K + n2

(1−α
2 ) ±

√(
2K + n2

(1−α
2 )

)2

− 4
(

N + n2

(1−α
2 )

)
K2

N

2
(

N + n2

(1−α
2 )

) (2.10)

The confidence interval for the exact probability of failure P̃ :

0 ≤ P1 ≤ P̃ ≤ P2 ≤ 1, (2.11)
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- The linear correlation coefficient for N responses yi belonging to the values xi,k of a parameter k:

ρxky =

N∑
i=1

(xi,k − xk)(yi − y)√
N∑

i=1

(xi,k − xk)2
√

N∑
i=1

(yi − y)2
, −1 ≤ ρxky ≤ 1 (2.12)

The confidence interval for the exact correlation coefficient ρ̃xky, assuming a normally distributed
estimating error:

tanh
[
1
2

ln
[
1 + ρxky

1− ρxky

]
−

t(1−α
2 ,N)√

N − 3

]
≤ ρ̃xky ≤ tanh

[
1
2

ln
[
1 + ρxky

1− ρxky

]
+

t(1−α
2 ,N)√

N − 3

]
. (2.13)

Every confidence interval includes the so called square root law for a larger number of experiments
N : The width of each confidence interval decreases with the inverse square root of the number of
experiments N . Because the interval width represents the accuracy of the corresponding quantity, the
accuracy of the results increases with the square root law, too.

2.5.3 Parameter Influence

The parameter influence is investigated by considering the linear correlation coefficients between sy-
stem responses and parameters. As a special property, the confidence interval width of the estimated
correlation coefficient decreases with an increasing absolute value of the correlation coefficient |ρxky|
(see eq. 2.13). Accordingly, the accuracy increases at the same time. The parameter influence on the
distance to the 10◦-plain (d10◦-plain), as the most important system response, is shown in Fig. 2.9 using
a certainty of 1− α = 90% for the confidence intervals (the bold line represents the estimated value).
A parameter is called ”significant“ if the associated interval width does not include the value ρxky = 0, so
its influence can’t be neglected. Apparently about half of the interval width, belonging to the estimated
coefficients, is in almost all cases larger than the coefficient itself so just very few of the parameters can
be identified as significant for the system response. This result is not satisfying, so it should be investi-
gated how the quality can be improved in order to receive more detailed information and more precise
conclusions in a further analysis.
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Fig. 2.9: Linear correlation coefficients of all parameters with respect to the response d10◦-plain. Each
thick line indicates the estimated value of a correlation coefficient whereas the thinner upper
and lower lines represent the corresponding confidence interval.
(α = 10%; Th. = sheet thickness, YS = yield stress)
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3 Properties of the Correlation Coefficient

3.1 Interpretation of the Correlation Coefficient

For a better understanding, a very simple system is investigated in detail: It depends on one parameter x1

with a pure linear influence and a second parameter x2 with a pure quadratic influence on the response
y as shown in Fig. 3.1. This response surface is sampled with N = 1000 equal distributed experiments
which can be projected to 2-dimensional plots (Fig. 3.2 and 3.3). In each plot of a parameter x1 or
x2 vs. the response y, the scatter around a middle trend is obviously caused by the other remaining
(not directly displayed) parameter. The correlation coefficient considers just 2-dimensional information
between the values of two quantities (e. g. one parameter and one response). This observation is not
limited to 2-dimensional problems, thus scatter in a 2-dimensional plot of an arbitrary multi-dimensional
system is always caused by the remaining parameters. Even noise may be interpreted as the influence
of other (unknown and therefore not controllable) parameters, so each arbitrary system response may
always be assumed to be dependent on a certain number of parameters in a purely deterministic way.
Therefore each system response could be described exactly by a unique surface.
If more than one parameter influences the system response, scatter is always present in any plot of a
parameter vs. a system response.
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Fig. 3.1: Distribution of N = 1000 experiments sampling the response surface y = y(x1, x2)
(linear relation with respect to x1, quadratic relation with respect to x2)

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

y

x1

Fig. 3.2: Distribution of parameter values x1

and responses y (ρx1y = 0.454)

0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1

y

x2

Fig. 3.3: Distribution of parameter values x2
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3.2 Values of the Correlation Coefficient

The correlation coefficient is non-dimensional and limited to the interval ρxky ∈ [−1, 1] (eq. 2.12). In
the following, different cases of 2-dimensional distributions are investigated with respect to the (linear)
correlation coefficient.

3.2.1 Linear System Response in Dependency of a Single Parameter

In this first case it is assumed that just one (or no) parameter has an exactly linear influence on the
system response. Therefore, no scatter can occur in the plot of the response vs. this parameter (Fig.
3.4). The relation between each system response yi and the observed parameter values xi,k is simply
given by

yi = a1xi,k + a0 and y = a1xk + a0 (3.1)

with arbitrary values for a0 and a1. Inserting into eq. 2.12 leads to the extrem values

ρxky ==
{

+1 for a1 ≥ 0
−1 for a1 ≤ 0 (3.2)

because the standard deviations in the denominator (see eq. 2.12) are selected as positive, while the
numerator may have both signs. For a1 = 0 the linear correlation coefficient is not unique, because it
has two possible solutions ρxky = ±1.

3.2.2 Arbitrary System Response and Observation of a Non-Influencing Parameter

For the opposite case it is assumed that in a multidimensional problem at least one parameter has a large
influence on the system response. Investigating another parameter with no influence on the response,
as shown in Fig. 3.5, leads to the correlation coefficient

ρxky = 0. (3.3)

The scatter caused by the other parameters is larger than the variability caused by the observed para-
meter.

3.2.3 Arbitrary System Response and Observation of an Arbitrary Influencing Parameter

- Between the extreme cases in eq. 3.2 and 3.3, the (linear) correlation coefficient may have any value
ρxky ∈ [−1, 1].

- In the case of a linear correlation coefficient, its sign conforms to the sign of the mean slope of the
response with respect to the investigated parameter.

- A parameter with a large influence on the system response causes a wide scatter in the plot of
any other parameter vs. the response (see Fig. 3.2 and 3.3). Vice versa, a parameter with a small
influence causes a small scatter in the plot of any other parameter vs. the response.
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- Therefore, parameters with large influence compared to all other parameters cause large absolu-
te values of the correlation coefficient. The correlation coefficient ranks the parameters’ influence
(absolute value). This is demonstrated in the following sections more precisely.

3.3 Relation Between the Linear Correlation Coefficient and the Regression Coefficient Using
Linear Polynomials

Generally, regression coefficients are found by means of the Least Square Criterion: The system re-
sponse at a single experiment xi = [xi,k] is defined as y(xi) = yi which can be approximated globally
by a sum of L shape functions φs(xi), weighted with the regression coefficient as:

f(xi) =
L∑

s=0

asφs(xi) = fi (3.4)

The difference between yi and fi is the regression or modelling error d(xi) = di:

y(xi) = f(xi) + d(xi) (3.5)

The matrices y = [yi], f = [fi] and d = [di] contain the corresponding values of all experiments xi. With
the shape functions X = [φk(xi)] = [Xi,k] and the regression coefficients a = [ak] the approximated
system responses may be written as

f = Xa. (3.6)

It is easy to demonstrate that
a = (XT X)−1XT y (3.7)

returns the demanded regression coefficients in terms of the least square method. In the special case
of a linear approach, eq. 3.4 may directly be written as

f(xi) = a0 +
n∑

k=1

akxi,k. (3.8)

The number of shape functions is now L = n + 1 with the problem’s dimension n. Therefore, the first
column of the matrix X contains just the constant value Xi,0 = 1 while the other columns are identical
to the columns of x. Eq. 3.6 integrated in eq. 3.7:

XT f = XT y =



N∑
i=1

fi

N∑
i=1

xi,1fi

N∑
i=1

xi,2fi

...
N∑

i=1

xi,kfi

...
N∑

i=1

xi,Lfi



=



N∑
i=1

yi

N∑
i=1

xi,1yi

N∑
i=1

xi,2yi

...
N∑

i=1

xi,kyi

...
N∑

i=1

xi,Lyi



(3.9)

The first position contains a rule for the mean values of the actual and the approximated system respon-
ses:

y =
1
N

N∑
i=1

yi =
1
N

N∑
i=1

fi = f (3.10)

The mean of the values xi,k of a single parameter is simply

xk =
1
N

N∑
i=1

xi,k. (3.11)
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The expected value (operator ”E“) of every approximated system response fi is

E[fi] = f + ak(xi,k − xk) = y + ak(xi,k − xk). (3.12)

A multiplication with any value of a parameter and following summation is allowed:

N∑
i=1

E[xi,kfi] =
N∑

i=1

[
xi,ky + ak(x2

i,k − xkxi,k)
]

=
N∑

i=1

xi,ky + ak

N∑
i=1

(x2
i,k − xkxi,k)

= E

[
N∑

i=1

xi,kfi

]
= E

[
N∑

i=1

xi,kyi

]
(3.13)

The second row is a consequence of eq. 3.9. Together with

Nxky =
N∑

i=1

xkyi =
N∑

i=1

xi,ky =
N∑

i=1

xky (3.14)

and

Nx2
k =

N∑
i=1

xkxi,k =
N∑

i=1

x2
k, (3.15)

eq. 3.13 may be expanded and converted:

E

[
N∑

i=1

xi,kyi

]
=

N∑
i=1

(xi,ky + [xkyi − xky]︸ ︷︷ ︸) + ak

N∑
i=1

(x2
i,k − xkxi,k + [x2

k − xkxi,k]︸ ︷︷ ︸) (3.16)

= 0 = 0

Changing the expectation operator to the regression coefficient ak

N∑
i=1

xi,kyi =
N∑

i=1

(xi,ky + xkyi − xky) + E[ak]
N∑

i=1

(x2
i,k − 2xkxi,k + x2

k), (3.17)

solving to E[ak] and gathering the sums provide the expected value for the regression coefficient in a
very simple form:

E[ak] =

N∑
i=1

(xi,k − xk)(yi − y)

N∑
i=1

(xi,k − xk)2
(3.18)

In comparison to eq. 2.12, the relation between the linear correlation coefficient and the regression
coefficient using linear polynomials is evidently

E[ak] = ρxky
σy

σxk

, (3.19)

with σxk
as the standard deviation of the parameter values xk = [xi]k and σy as the standard deviation

of the system responses y = [yi].
It is important to note that this equation contains just an expected value. The value of ak is equal to
the expected value E[ak] if the entire population (normally consisting of an infinite number of possible
parameter combinations xi) is used for computing ρxky, σxk

and σy.

3.4 Linear and Non-Linear Correlation Coefficient

In the case of a linear influence of a parameter xk on the system response y, the standard deviation of
the experiments σxk

is projected by means of the sensitivity ak on the system response with the standard
deviation σyk

:
σyk

= akσxk
(3.20)

The variance σ2
yk

is obviously caused by the parameter xk. It is always possible to associate a part of
the system response’s variance σ2

yk
with the influence of an arbitrary parameter xk, even if the influence
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is not linear.
Inserting 3.20 into 3.19 leads to the general definition of the correlation coefficient:

E[ρxky] =
σyk

σy
(3.21)

The correlation coefficient relates the variance σ2
yk

, caused by the influence of a parameter xk (which
doesn’t have to be linear), to the total variance σ2

y, caused by all parameters together.
Therefore, an arbitrary non-linear correlation coefficient for a parameter xk and the system response y
can be computed by performing a 1-dimensional regression

fk(xi) =
M∑

r=0

brφ
k
r (xi) = fk

i (3.22)

using M (1-dimensional) shape functions φk
r = φr(xk). In analogy to eq. 3.7, the regression coefficients

b = [br] may be found in
b = (ZT Z)−1ZT y, (3.23)

using
fk = Zb. (3.24)

Thus, the general correlation coefficient ρxky is

E[ρ2
xky] = E

[
Var[fk

i ]
Var[yi]

]
= E

[
Var[fk

i ]
σ2

y

]
≤ 1. (3.25)

Var[ ] is the operator of the variance. Eq. 3.25 may be used for the analysis of ”real“ systems.

3.5 Total Linear and Non-Linear Correlation Coefficient

As mentioned above, each arbitrary system response may always be assumed to be dependent on a
certain number of parameters in a purely deterministic way, so it could be described exactly by a unique
surface (see sec. 3.1).
Therefore, established system parameters x̂l (which are assumed to be directly controllable, ”design
parameters“ [13]) have to be distinguished from not established parameters x̃m (which are assumed to
be unknown, ”noise parameters“ [13]). As an example, buckling of a rotational symmetric tensile bar may
be controlled directly by varying its cross-sectional area or the pushing force, but the buckling direction
is only influenced by disturbances in a chaotic way (e. g. inhomogen material properties, geometrical
inaccuracies, ...). Disturbances are usually not controllable and not established. Not established para-
meters may be defined for modelling of noise in real system responses. They cause a process variation
of the system response [13].

If an arbitrary system depends on more than one parameter (established or not), the total variance
σ2

y of the system response can be separated in the variance caused by a single parameter xk and a
variance caused by all other parameters xl 6=k. Therefore, the system response for any experiment may
be displayed as

yi = y + yi,k + yi,l 6=k (3.26)

with the (predefined) expected values

E[yi − y] = E[yi,k] = E[yi,l 6=k] = 0. (3.27)

Squaring of eq. 3.26 leads to
E

[
(yi − y)2

]
= y2

i,k + y2
i,l 6=k (3.28)

because yi,k and yi,l 6=k are independent from each other (E[yi,k yi,l 6=k] = 0). Thus, the total expected
variance is

E[σ2
y] = σ2

yk
+ σ2

yl 6=k
. (3.29)

This operation can be done for the variance σ2
yl 6=k

recursively so the overall variance σ2
y of the system

response is simply:

E[σ2
y] =

n∑
k=1

σ2
yk

or E

[
n∑

k=1

σ2
yk

σ2
y

]
= 1 (3.30)
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Inserting eq. 3.21 into eq. 3.30 results in

E

[
n∑

k=1

ρ2
xky

]
=

{
1 for ∀ yi 6= y0 = const.
n for ∀ yi = y0 = const.

(3.31)

The first case is valid as long as at least one parameter influences the response y, respectively at least
two different yi have different values. In the other case every single correlation coefficient is exactly
ρxky = ±1 (threshold value).

In an analysis of an arbitrary system, only the established parameters are recognized, so in eq. 3.30 the
variances σ̂2

yl
and σ̃2

ym
, caused by the parameters x̂l and x̃m, are summed up to

E[σ2
y] =

nest.∑
l=1

σ̂2
yl

+
n∑

m=nest.+1

σ̃2
ym

= σ̂2
y + σ̃2

y or E

[
σ̂2

y

σ2
y

]
≤ 1 (3.32)

because of
0 ≤ σ̃2

y ≤ σ2
y. (3.33)

This is nothing but the extension of eq. 3.21 to a multi-dimensional correlation analysis:

E[ρ2
x y] = E

[
nest.∑
l=1

ρ2
xly

]
= E

[
σ̂2

y

σ2
y

]
≤ 1 for ∀ yi 6= y0 = const. (3.34)

For a ”real“ system (cp. eq. 3.25):

E[ρ2
x y] = E

[
nest.∑
l=1

ρ2
xly

]
= E

[
Var[fi]
Var[yi]

]
= E

[
Var[fi]

σ2
y

]
≤ 1 (3.35)

ρx y = ρtot is the total correlation coefficient [8] that is better known as R2 = ρ2
tot. fi are the system

responses associated to the experiments xi, approximated by arbitrary (linear or non-linear) shape func-
tions (eq. 3.4).
Ineq. 3.34 or 3.35 implicate that the absolute value of each correlation coefficient ρ2

xky decreases with
an increasing number of significant parameters.

4 Conclusions

- Estimated values of arbitrary statistical quantities must be regarded always together with their corre-
sponding confidence intervals.

- Parameters with a large influence on the system response cause large absolute values of the corre-
sponding correlation coefficients. Therefore, the correlation coefficient may be used for the ranking
of the parameter’s importance with respect to the system responses. In the case of linear cor-
relation coefficients, their signs conform to the signs of the corresponding physical sensitivities or
regression coefficients.

- ”Linear“ regression coefficients (= physical sensitivities) may be approximated using the correlation
coefficients, the standard deviations of the parameter values and the standard deviations of the sy-
stem response values (eq. 3.19). This is always possible. All of the three items are estimated, so the
error of this operation will be gathered. Therefore, it is recommended to compute the linear re-
gression coefficients directly (eq. 3.7) in order to minimize their error of estimation. However,
this is only possible if the problem’s number of degrees of freedom is positive (N > n) and the matrix
XT X not singular.

- The absolute values of the correlation coefficients are limited due to the validity of ineq. 3.34 or 3.35.
As mentioned in sec. 2.5.3, the accuracy of the correlation coefficients decreases with decreasing
absolute values, too. Therefore, it is recommended not to use a large number of significant
parameters for a given number of experiments, as far as this can be estimated before the analysis.
This is contrary to the purpose of the robustness investigation and a lack of the correlation analysis.
On the other hand, the accuracy of each statistical quantity may always be increased by using
a larger numbers of experiments. High accuracies are represented by small confidence intervals.

c© 2005 Copyright by DYNAmore GmbH

Robustheit

D - I - 26



4. LS-DYNA Anwenderforum, Bamberg 2005

- It should always be considered, that a pure regression analysis is an appropriate alternative to the
pure correlation analysis, if the number of degrees of freedom is sufficient large. A parameter scree-
ning might be applied using the Analysis of Variance (ANOVA), usually performed with a D-optimal
design of experiments. ANOVA also provides confidence intervals for the regression coefficients [1],
[9], [11], [12], [14].
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