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Abstract:

The design of engineering systems requires a sophisticated structural analysis close to reality. The
uncertainty of structural parameters, such as loads, material parameters, and geometrical properties
must be taken into account. Based on the framework of probabilistics a structural behavior may be
assessed by a failure probability. The failure probability can be computed with the aid of Monte Carlo
simulation. Especially in the case of complex nonlinear structures the Monte Carlo simulation meets
their limits. The more advanced simulation method subset sampling, which promises to compensate
this drawback, is investigated in this paper. The main idea of subset sampling is the subdivision of the
failure event into a sequence of partial failure events, which are denoted as subsets. The numerical
efficient sampling within the subset is realized with aid of the Markov chain Monte Carlo simulation.
Subset sampling is demonstrated by means of examples.
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1 Introduction

The design of engineering systems requires a structural analysis close to reality. In general, this is rea-
lized with the aid of a numerical computational model. For analyzing the nonlinear behavior of complex
engineering structures the Finite Element method provides a sophisticated basis. Further, to obtain
useful results the structural parameters, such as loads, material parameters, and geometrical properties
must be specified realistically. In engineering practice, the structural parameters are frequently affected
by uncertainty. This uncertainty is reflected in the structural responses and the reliability. As a conse-
quence requirements regarding a desired structural behavior can no longer be formulated in absolute
terms, but must be defined with respect to this uncertainty.

Based on the framework of probabilistics for modeling and processing uncertainty, design constraints
are formulated as limits for the failure probability. The failure probability can be computed with the aid
of analytical and numerical methods. For the probabilistic analysis of complex structures, analytical
methods generally meet their limits, and a numerical solution is associated with a considerable com-
putational cost. A useful basis for the solution of general problems is the Monte Carlo simulation and
further developments there of. In this approach random realizations of the structural parameters are
generated according to their probability distribution. The associated results are collected in a sample,
which reflects the statistical properties of the structural response and enables the estimation of the fai-
lure probability. In industrial applications it can be necessary to estimate small failure probabilities. In
those cases the direct Monte Carlo simulation may require a high computational effort. This applies, in
particular, in association with an underlying nonlinear Finite Element analysis of large systems, which
repeatedly performed with in the Monte Carlo framework. To compensate this drawback, advanced
simulation methods are developed, e.g. importance sampling, line sampling, or subset sampling.

A short review of the Monte Carlo simulation given in Sec. 2 is followed by a detailed explanation of
the newly introduced method subset sampling in Sec. 3. Thereby, the basic idea, algorithms, and some
remarks with respect to numerical efficiency are provided. Sec. 4 includes a benchmark study and two
further examples.

2 Direct Monte Carlo simulation

The direct Monte Carlo simulation is a computational algorithm, which is capable to assess the reliability
of structures in terms of the failure probability. It quotes a numerical robust approximate solution of
integrals which are unseizable with analytical methods. This holds for the determination of the failure
probability

PF = P(x | g(x)≤ 0) =
∫

x|g(x)≤0
f (x)dx (1)

if either the joint density function f (x) is non-Gaussian or the structural performance function g(x) is
nonlinear. Structural analysis requires the application of an appropriate numerical computational model.
In order to obtain results close to reality, nonlinear algorithms have to be applied. In this case the
limit state function g(x), which is the boundary between survival and failure cannot be specified in a
closed form, but rather pointwise as a result of individual deterministic numerical simulations. The failure
probability can be computed by means of an indicator function

IF(x) =
{

1 if x ∈ F
0 if x 6∈ F with F = {x | g(x)≤ 0} . (2)

where F denotes the failure region. The Monte Carlo simulation uses the interpretation of the integral

PF =
∫

x
IF(x) f (x)dx = E(IF(x)) (3)

in order to estimate the failure probability PF . The application of the strong Law of Large Numbers yields

E(IF(x)) = lim
N→∞

1
N

N

∑
k=1

IF(xk) . (4)
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The evaluation of Eq. (4) demands the existence of a sample {xk}N
k=1 of N elements distributed with the

probability density function f (x). An estimator P̂F for the failure probability is derived from Eq. (4)

P̂F = Ê(IF(x)) =
1
N

N

∑
k=1

IF(xk) . (5)

P̂F converges to the failure probability PF as the number of samples N approaches to infinity [2, 8, 10].
The expected value E and the variance Var of the estimated failure probability arise to

E(P̂F) = PF , (6)

Var(P̂F) =
(1−PF)PF

N
. (7)

The coefficient of variation is determined by

δPF =

√
Var

[
P̂F
]

E
[
P̂F
] =

√
1−PF

PF ·N
. (8)

The coefficient of variation does not depend on the dimensionality of the random vector x. The deter-
mination of a small failure probability PF with an acceptable level of accuracy demands a large number
of samples N. An overview about the required number of samples for different values of the failure
probability PF and the coefficient of variation δPF is given exemplarily in Tab. 1.

Table 1: Estimated number of samples for Monte Carlo simulation
PF 10−1 10−2 10−3 10−4

δPF = 0.3 1 ·102 1.1 ·103 1.11 ·104 1.111 ·105

δPF = 0.1 9 ·102 1 ·104 1 ·105 1 ·106

δPF = 0.01 9 ·104 1 ·106 1 ·107 1 ·108

Tab. 1 points out, that the computational effort increases enormously for small values of failure probability
PF . In the field of stochastic analysis various methods, e.g. importance sampling [2, 8, 9, 10], line
sampling [3, 6], and subset sampling [1, 6] have been developed for decreasing the computational effort
in a significant manner. In this paper the subset sampling is examined and assessed in comparison to
direct Monte Carlo simulation.

3 Subset sampling

3.1 Basic concept

The main principle of the presented method was first mentioned in literature as umbrella sampling [11].
Nowadays this method is referred to as subset sampling. The basic idea of subset sampling is the
subdivision of the failure event into a sequence of m partial failure events (subsets) F1 ⊃ F2 ⊃ ·· · ⊃ Fm =
F . Generally, the determination of small failure probabilities PF with the aid of Monte Carlo simulation
requires the expensive simulation of rare events. The division into subsets (subproblems) offers the
possibility to transfer the simulation of rare events into a set of simulations of more frequent events. The
determination of the failure regions Fi can be effected by presetting a series {gi}m

i=1 of limit values

Fi = {x : g(x)≤ gi} . (9)

This enables the computation of the failure probability as product of conditional probabilities P(Fi+1|Fi)
and P(F1).

PF = P(Fm) = P(Fm|Fm−1)P(Fm−1|Fm−2) · · ·P(F2|F1)P(F1) (10)

= P(F1)
m−1

∏
i=1

P(Fi+1|Fi) (11)
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Whereas m denotes the (unknown) total number of subsets. The determination of the failure regions Fi
and subsequently the partial failure probabilities Pi = P(Fi+1 |Fi) influences the accuracy of the simulation.
It is convenient to specify the limit values {gi}m

i=1 so that nearly equal partial failure probabilities Pi | i =
2 . . . m are obtained for each subset. A proposed value is Pi = 0.1 [1]. Unfortunately, it is difficult to specify
the limit values gi in advance according to the prescribed probability Pi. Therefore the limit values have
to be determined adaptively within the simulation.

3.2 Subset sampling algorithm

In the first step the probability P1 = P(F1) is determined by application of the direct Monte Carlo simulation

P(F1)≈ P̂1 =
1

N1

N1

∑
k=1

IF1(x
(1)
k ) . (12)

To obtain conditional probabilities P(Fi+1|Fi) the evaluation of the respective probability functions

f (x | Fi) =
IFi(x) f (x)

P(Fi)
(13)

is necessary. With the application of the Markov chain Monte Carlo simulation in conjunction with the
Metropolis-Hastings algorithm samples may be generated in a numerically efficient way according to
f (x | Fi). The starting samples of the subset i + 1 are taken out of the x(i)

k (i = 1, . . . , m− 1) lying in
Fi. Starting from these samples, Markov chain samples can be simulated using e.g. the modified
Metropolis-Hastings method.

P(Fi+1|Fi)≈ P̂i+1 =
1

Ni+1

Ni+1

∑
k=1

IFi+1(x
(i+1)
k ) (14)

The starting sample of the subset i + 1 is selected randomly from the samples x(i) | gi(x(i)) ≤ gi, i =
1, . . . , m− 1 of subset i that are located in the failure region Fi. It is valid to constitute the limit value gi
with respect to the condition Pi ≈ Pi−1∀ i > 1. As already mentioned, this cannot be realized in advance.
Thus, the limit value gi of the i-th partial subset is determined adaptively during the simulation. Therefore,
gi is determined from a list of ascending sorted tuple {(x(i)

k ,g(x(i)
k ))}Ni

k=1 according to the values g(x(i)
k ).

The limit value gi is given by
gi = g

(
x(i)

j

)
| j = int(Pi ·Ni) . (15)

Under the condition gi ≤ 0 the last subset m of the simulation has been reached. The last failure proba-
bility P(Fm | Fm−1) can be estimated with

P(Fm|Fm−1)≈ P̂m =
1

Nm

Nm

∑
k=1

IFm(x(m)
k ) (16)

The failure probability PF may now be computed as

PF = P1 ·
m

∏
i=2

Pi . (17)

The subset sampling algorithm is exemplified for three subsets in Fig. 1.
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g( ) = gx 1

xk

(1)

g( ) = gx 1
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(2)

g( ) = gx 2 g( ) = gx 2

xk

(3)

g( ) = 0x

Figure 1: Subset sampling in three states

3.3 Markov chain Monte Carlo simulation

The sampling within the subsets is realized with the aid of Markov chains and the associated Markov
chain Monte Carlo simulation. In the following sections the Markov chains are briefly introduced and the
applied sampling algorithms are described.

3.3.1 Markov chains

A Markov chain is a sequence of random vectors X0, X1, . . . , Xk in the state space I with the Markov
property

P(Xk+1 = ik+1|Xk = ik, Xk−1 = ik−1, . . . , X0 = i0) = P(Xk+1 = ik+1|Xk = ik) (18)

while i0, . . . , ik+1 ∈ I. The Markov property signifies that the probability to reach an arbitrary state ik+1
depends only on the state ik and is independent from all former states. The Markov chain is called
homogeneous, if the probability for transition

P(Xk+1 = ik+1|Xk = ik) (19)

is independent from the state k [4].

For an arbitrary given probability density function f (x) an (ergodic) Markov chain can be constructed
which generates realizations approximately distributed as f (x). This approach is called Markov chain
Monte Carlo simulation. The expected value E for a function h(x) is in the case of ergodicity of a Markov
chain

E(h) = lim
N→∞

1
N

N

∑
k=1

h(xk) . (20)

Thus the estimator P̂F for the failure probability PF can be expressed by

P̂F = Ê(IF(x)) =
1
N

N

∑
k=1

IF(xk) (21)

while {xk}N
k=1 are realizations of the Markov chain. Eq. (21) is formal identical with Eq. (6) unlike the

samples are generated from a Markov chain. They can still be used for statistical averaging as if they
were independent by virtue of the Laws of Large Numbers [1]. The coefficient of variation δPF is given by

δPF =
√

1−PF

PF N
(1+ γ) (22)

In comparison to Eq. (6) the Eq. (22) includes an additional term (1+ γ) that considers the correlation of
the Markov chain samples . The term N/(1+ γ) may be interpreted as the effective number of samples.
Despite of the correlation of the Markov chain samples the estimator P̂F is asymptotically unbiased so
that the convergence is assured [1].
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The implementation of Markov chain Monte Carlo simulation may be realized by various algorithms, e.g.,
Gibbs sampler, Metropolis-Hastings algorithm, and Barker algorithm [7]. In the following the Metropolis-
Hastings algorithm is applied.

3.3.2 Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm generates realizations of a Markov chain according to a given pro-
bability density function f (x). Beside f (x) an arbitrary n-dimensional proposal density function q(y|x) is
introduced. The procedure for the transit from the state k to the state k +1 is given in algorithm 1.

Algorithm 1 Metropolis-Hastings algorithm [1]
Given is xk:

1. Generate a candidate x∗k+1:

a) Simulate y according to q(y | xk)

b) Calculate the acceptance ratio:

ρ(xk, y) = min

{
1,

f (y)
f (xk)

q(xk | y)
q(y|xk)

}

c) Define x∗k+1 using the acceptance ratio:

x∗k+1 =
{

y with probability ρ(xk, y)
xk with probability 1−ρ(xk, y)

2. Define xk+1 according to F :

xk+1 =


x∗k+1 when x∗k+1 ∈ F
xk when x∗k+1 /∈ F
xk when x∗k+1 = xk

The vector y is always accepted if the acceptance ratio ρ(xk, y) is 1. In any other case y is accepted
as next candidate x∗k+1 = y with a probability ρ(xk, y). For a symmetric proposal density function, where

q(x|y) = q(y|x), the acceptance ratio ρ(xk, y) is determined by the ratio of f (y)
f (xk)

only .

For high dimensional probability density functions f (x) the ”zero-acceptance” phenomenon occurs [1].
It is characterized by generally small values for the acceptance ratio (ρ(xk, y)' 0). This yields to almost
no acceptance of y as next candidate x∗k+1. This drawback can be dealt with the modified Metropolis-
Hastings algorithm as introduced in Sec. 3.3.3.

3.3.3 Modified Metropolis-Hastings algorithm

The intention of the modified Metropolis-Hastings algorithm is to suppress the described ”zeroacceptance”
phenomenon. This is achieved by generating groups of components j = 1, . . . , nG of the candidate
x∗k+1 =

(
x∗(1)

k+1 , . . . , x∗(nG)
k+1

)
. Thus, the acceptance ratio ρ(xk, y) is only influenced by the dimensionality of

the groups nG. For each group j | j = 1, . . . , nG a proposal density function q j has to be constituted. The
algorithm 2 outlines the transit from the state k to the state k +1.
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Algorithm 2 Modified Metropolis-Hastings algorithm for high dimensions [1]
Given is xk:

1. Generate a candidate x∗k+1 =
[
x∗(1)

k+1, . . . , x∗(nG)
k+1

]
:

a) Simulate y( j) according to q j(y( j) | x( j)
k )

b) Calculate the acceptance ratio:

ρ
( j)(x( j)

k , y( j)) = min

{
1,

f (y( j))

f (x( j)
k )

q j(x
( j)
k |y( j))

q j(y( j)|x( j)
k )

}

c) Define x∗k+1using the acceptance ratio:

x∗( j)
k+1 =

{
y( j) with probability ρ( j)(x( j)

k , y( j))
x( j)

k with probability 1−ρ( j)(x( j)
k , y( j))

2. Define xk+1according to F :

xk+1 =


x∗k+1 when x∗k+1 ∈ F
xk when x∗k+1 /∈ F
xk when x∗k+1 = xk

3.4 Numerical efficiency of subset sampling

A comparison of the numerical efficiency of subset sampling and Monte Carlo simulation is shown in
Fig. 2. In contrast to Monte Carlo simulation the required sample size for subset sampling cannot be
predetermined in advance. In [1] a coarse approximation of the number of samples NT , which is sufficient
to estimate P̂F , is given by

NT ≈ mN = |logPF |r×
(1+ γ)(1− p0)
p0 |log p0|r δ 2 . (23)

The exponent r≤ 3 in Eq. (23) specifies the correlation of the Pi of the individual subsets. The coefficient
of variation δi of P̂i (i = 2, . . . , m) is

δi =
√

1−Pi

Pi N
(1+ γi) . (24)

The value of γi denotes the correlation among Markov chain samples and depends itself on the selected
proposal density function q. The accuracy of the conditional probability estimator P̂i is reduced for γi > 0
compared to the case of independently distributed samples (γi = 0). The estimator P̂i (i = 2, . . . , m) is
unbiased, the Strong Law of Large Numbers and the Central Limit Theorem are hold. Consequently this
holds for estimator P̂F of the failure probability (with N → ∞) (see also Sec. 3.3.1).

The coefficient of variation δ of P̂F is given by

δ = E
[

P̂F −PF

PF

]
. (25)

Eq. (25) is ruled by the correlation of the estimators P̂i. In case of uncorrelated samples the coefficient
of variation δ is

δ =

√
m

∑
i=1

δ 2
i . (26)

Simulations show that despite the fact that Pi is generally estimated on the basis of correlated samples
Eq. (26) is a valuable approximation. A substantial improvement in efficiency in comparison to the Monte
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Carlo simulation is obtained for small failure probabilities PF and small values for γ and r. The improve-
ment can be noticed comparing N ∼ |lgPF |r (subset sampling) with N ∼ 1/PF (Monte Carlo simulation).

(a) Estimated number of samples for diffrent PF (b) Estimated computational benefit

Figure 2: Estimated computational effort of the Monte Carlo simulation vs. Subset sampling on the basis
of Eq. (23)

4 Example

4.1 Benchmark study

The subset sampling method is demonstrated by means of a numerical example. The performance
function z(x) is given by

z(x) = 8 · exp(−(x2
1 + x2

2))+2 · exp(−((x1−5)2 +(x2−4)2))+1+
x1 · x2

10
. (27)

Both input variables x1 and x2 are assumed to be randomly distributed. Each random variable Xi is
modeled with a beta distribution defined by the probability density function

f (xi) =
1

B(p,q)
xp−1

i (1− xi)q−1 | f (xi)≥ 0 . (28)

A value of q = p = 6 is assigned to the distribution parameters q and p. The standardisation of the beta
distribution is achieved with aid of the beta function

B(p,q) =
∫ 1

0
up−1(1−u)q−1 du . (29)

As a result realizations are obtained in the interval [−2, 6]. A failure event occurs if the performance
function exceeds values z(x) > 7.5. Respectively, a failure is indicated by g(x) < 0. The performance
function z(x) and limit state function g(x) are shown in Fig. 3.

The sampling within the initial subset is realized with the aid of the Monte Carlo simulation. For the
following subsets the subset sampling algorithm in conjunction with the Metropolis-Hastings algorithm is
applied. As proposal density function a Gaussian proposal density function

q(y | xk) =
1

σ
√

2π
exp

(
−1

2

(
y− xk

σ

)2
)

(30)

with a standard deviation of σ = 2 for each subset is deployed. For the determination of the failure
probability three different sample sizes are investigated, see Tab. 2. The partial failure probability is
predefined to Pi = 0.1 for each subset.
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Table 2: Sample size of the different subset simulations
total number of

samples
number of samples
in the first subset

(Monte Carlo)

number of samples
in the following

subsets
12000 6000 3000
8000 4000 2000
4000 2000 1000

The subset sampling algorithm is illustrated in Fig. 4. In consequence of the selected partial failure
probability the simulation reaches the final failure region F after three subsets.
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(a) First subset (Monte Carlo simulation)

x1

0

2

4

6

8

-2
-1

0
1

2
3

4
5

6

-2

-1

0

1

2

3

4

5

6

z( )x

x2

limit state function

failure region

(b) Second subset (Metropolis-Hasting)

x1

0

2

4

6

8

-2
-1

0
1

2
3

4
5

6

-2

-1

0

1

2

3

4

5

6

z( )x

x2

limit state function

failure region

(c) Third subset (Metropolis-Hasting)

Figure 3: Distribution of samples for each subset

In order to assess the quality of subset sampling the simulation is performed repeatedly (1000 times).
The obtained results P̂F are plotted histogram in Fig. 4. The determined mean values of P̂F are listed in
Tab. 3 for each case. In comparison to the mean value P̂f = 4.05 · 10−3, which is computed by a direct
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Monte Carlo simulation with a sample size of 25000, the results of the subset sampling yield a suitable
approximation with a considerable small sample size.
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Figure 4: Histogram of the obtained failure probabilities PF

Table 3: Resulting failure probabilities P̂F for each subset simulation (mean value P̂F of 1000 simulations)

N = 4000 N = 8000 N = 12000

P̂F = 3,8 ·10−3 P̂F = 3,77 ·10−3 P̂F = 3,88 ·10−3

4.2 T-beam floor construction

A T-beam floor construction with a span of 6.0 m made of reinforced concrete (RC) is investigated with
the aid of physically nonlinear analysis algorithms according to [5]. The structural reliability in relation
to a certain threshold of deformation is assessed. A section of the structure with two beams is shown
in Fig. 5. The section is discretized by means of 156 layered hybrid finite elements with assumed stress
distribution. The beams are modeled using 12 concrete layers and the plate portions of the floor using
5 concrete layers. The steel reinforcement is specified as an uniaxial smeared layer in both cases. The
physically nonlinear analysis is performed considering endochronic material laws for concrete and steel.
Crack formation, tension stiffening, and steel yielding are taken into account.

The T-beam floor construction is part of an existing structure. The load prehistory includes the dead
load g, the additional load g1 and the live load p2. Future loading includes additionally a live load p2 and
point loads P. The loads g1, p1, and p2 are modeled as uniformly distributed superficial loads. The point
loads P result from a suspended construction and are modeled as nodal loads of magnitude P = 30 kN.
First, the reliability is computed, that the structure will maintain the certain threshold of deformation
during operation. Thereby, v = 30 mm is selected as displacement threshold for the suspension point.
The uncertainty of the live loads and of the material properties of the concrete are considered in the
reliability assessment. The loads p1 and p2 are modeled as random variables with an extreme value
distribution of maximum values type I (Gumbel distribution). The probability distribution function reads

F (pi) = exp(−exp(−a(pi−u))) | i = 1, 2 . (31)

The structural resistance depends mainly on the uncertain concrete compressive strength β . Thus, the
compressive strength β is specified in this case as a Gaussian distributed stationary random field with
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Figure 5: Geometry, material and FE model

the expected value mβ = 20 N/mm2 and a standard deviation σβ = 2 N/mm2 . From the discretization
of the random field according to the midpoint method yields 156 correlated random variables. Using
an eigenvalue analysis of the correlation matrix only 34 independent random variables are determined,
which are considered. Thus, together with the random loads a 36 dimensional input space results.

Two subset simulations and a direct Monte-Carlo simulation are computed. The partial failure probabi-
lities are chosen to Pi = 0.1. The resulting failure probability and the number of samples are shown in
Tab. 4. Subset sampling provides results in a manner that meet the results of the Monte Carlo simulation
approximately, but only 30 percent of sampling points are required.

Table 4: Results of the reliability assessment
PF number of

MCS points
number of

chains
point per chain

Subset sampling 1 0.021 400 2 200
Subset sampling 2 0.013 400 2 200

Monte-Carlo 0.025 2700

Due to the additional loads it is expected that the reliability of the RC structure drops below a requi-
red boundary defined by PF = 0.005. Therefore, the RC construction is strengthened with the aid of
a textile reinforced concrete (TRC) layer. This new technology is currently under development. Initial
investigations show promising results according to increase the load-bearing capacity and reliability [5].

In order to strengthen the damaged RC T-beam construction textile-reinforced fine-grade concrete layers
are applied to the surface. The textile reinforcement of these layers consists of filament yarns (rovings)
connected together by stitching yarn (see Fig. 6). Each roving comprises a large number of single
filaments. The textile reinforcement may consist of different fiber materials, e.g., alkali resistant glass
(ARG) or carbon. The strengthening of reinforced concrete (aged RC) with textile-reinforced fine-grade
concrete (textile concrete) results in a composite structure (Fig. 6).

The reliability of the strengthened structure is computed. Beside the uncertainty of the live loads and
the material properties of the aged RC, the uncertainty of the fine-grade concrete is considered.

The tensile strength βt is specified in this case as a Gaussian distributed stationary random field. Again
from the discretization into 156 finite elements, 156 correlated random variables result and only 34 inde-
pendent random variables are considered. Thus, together with the random loads and the random field
of the concrete compressive strength a 70 dimensional input space is obtained.
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interface

rovings

Figure 6: Example of textile reinforcement and composite material

Four subset simulations and a direct Monte Carlo simulation are performed. The resulting failure pro-
bability and the number of samples are shown in Tab. 5. In this case the number of sample points
decreases to 15 percent. The required reliability is preserved.

Table 5: Results of the reliability assessment of the strengthened structure
PF number of

MCS points
number of

chains
points per

chain
Subset sampling 1 0.0014 500 2 250
Subset sampling 2 0.0027 500 2 250
Subset sampling 3 0.0036 500 5 100
Subset sampling 4 0.0027 500 5 100

Monte Carlo 0.0023 10000

4.3 Deep-drawing of a sheet metal

Deep-drawing is a sheet metal forming process. During the deep-drawing procedure the thickness of
the sheet metal is reduced in some regions. If the thickness reduction exceeds a certain threshold the
sheet has to be rejected. In order to predict the number of rejected sheets a reliability assessment of
the process should be performed. The geometry of the investigated example is shown in Fig. 7.
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Figure 7: Discretized model with significant measures

For the determination of the thickness reduction of the sheet metal the units shown in Fig. 7 are discre-
tized with finite elements. The program LS-DYNA is applied for computing the thickness reduction.
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A realization of the computed sheet metal forming process is depicted in Fig. 8. In the reliability assess-
ment only the last time step t = 0.0105s is considered.

(a) t = 0.00s (b) t = 0.00315s

(c) t = 0.00735s (d) t = 0.0105s

Figure 8: Deep-drawing process for one realization

Twelve uncertain input variables X1, . . . , X12 are selected and modeled by means of a beta distribution.
The limit state g(x) = 0 is defined as a thinning of the steel sheet to 83.4 percent. Thus, a thickness
reduction greater than 16.6 percent denotes a failure. The examined point is situated in the lower region
of the concavity. The failure probability is determined with the aid of subset sampling. The number
of samples for the first subset (Monte Carlo simulation) is chosen with 600 samples and the following
subsets with 300 samples. One Markov chain for each subset is applied. The proposal density func-
tion is chosen to be a normal density function with a standard deviation σ = 1. Three subset sampling
simulations are performed. A Monte Carlo simulation with a total number of 4300 samples is perfor-
med additionally to enable the validation of the results. The coefficient of variation of the Monte Carlo
simulation is estimated to 20 percent using Eq. (8).

The evaluation of results shows a satisfactory conformity of results (see Tab. 6) considering that the
Monte Carlo simulation itself possesses a coefficient of variation of 20 percent. Concerning the Markov
chain Monte Carlo simulation the acceptance ratio is considerable high caused by the applied modified
Metropolis-Hastings algorithm. Thereby, the probability of rejection of each component of the candidate
x∗k+1 =

[
x∗(1)

k+1, . . . , x∗(12)
k+1

]
is small.

Table 6: Results of the reliability assessment
Monte Carlo Subset sampling

1 2 3
PF 0.006 0.0021 0.0034 0.0023

Sample size 4300 1200
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5 Conclusions

Subset sampling provides a useful method for the reliability analysis of structures. This has been de-
monstrated by means of examples. Compared to a direct Monte Carlo simulation the numerical effi-
ciency is significantly improved, in particular, in the computation of small failure probabilities such as
PF < 10−3 . . .10−4. As a consequence of the reduced number of computations an increasing in the va-
riance of the failure probability is observed. Further developments are focused on the remedy of this
weakness.
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