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Abstract:

The design of metal forming processes is an ambitious task in order to ensure a high quality of the sub-
sequent products. The assessments of designs, neglecting the data uncertainty, can result in fallacious
prognosis and hence lead to false decisions. Therefore, the consideration of uncertainties in the design
process has been brought forward in the recent past. Until now merely probabilistic uncertainty models
are applied, solely allowing to model information with the characteristic randomness. This is insufficient
for engineering applications reasoning that available information are dubious, incomplete, or fragmen-
tary. To model those information appropriately enhanced uncertainty models on the basis of imprecise
probabilities have been developed, e.g., the data model fuzzy randomness. This enables the assess-
ment of alternative design variants on the basis of truly available information. The numerical realization
is performed by means of generic optimization algorithms and fuzzy stochastic structural analysis. Both
are introduced in this paper and their applicability is demonstrated by an example.
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1 Introduction

The design of a metal forming process is focused on the accuracy of products and the minimization of
forming failure such as fracture, wrinkling and excessive thickness reduction. The aim is to identify the
best configuration of adjustable design quantities, e.g. draw bead forces and binder forces, to obtain high
quality products. The quality of a product is strongly influenced by various further process quantities such
as the anisotropic behavior of the material, the initial sheet thickness, the initial trimming of the blank,
the friction coefficient, etc. Due to several production conditions the description of these quantities by
crisp values may yield erroneous conclusions. In order to perform a realistic analysis the uncertainty
of the process quantities must be appropriately considered within the numerical simulation. A proper
consideration and treatment of uncertainty basically enable a reliability assessment of a metal forming
process to ensure the subsequent quality of the product and hence provide a basis to evaluate several
design variants.

A popular classification of uncertainty, with respect to its sources, distinguishes between aleatory and
epistemic uncertainty. Aleatory uncertainty is characterized by randomness and is primarily associated
with objectivity. Epistemic uncertainty may be comprised of substantial amounts of both objectivity
and subjectivity separately. This appears for instance due to a lack of information, which impedes
the specification of a unique probabilistic model and unclear generation schemes of observations that
deviate from a pure random nature. The problems of accounting for subjective uncertainty and specifying
a unique probabilistic model are often addressed in literature, e.g., “In real situations, it mostly turns out
that the needed information is lacking. Moreover . . . even small errors in probabilistic data may lead to
large errors in estimating probabilities of failure” [5].

The probabilistic concept is a well known and widespread method in the engineering practice [13] ac-
counting for aleatory uncertainty. In order to model stochastic quantities appropriately, e.g., with a
probability distribution function and its parameters, some boundary conditions have to be met. The im-
portance once are a sufficiently large sample size, the i.i.d. paradigm and the absence of imprecision.
The compliance of those conditions is all but impossible for practical applications.

Uncertainty models incorporating epistemic uncertainty have been developed in the recent past [9]. They
increasingly attract attention in solving practice relevant problems. Methods capable of mathematically
describing and quantifying objective and subjective uncertainty are, e.g., probability theory including
subjective probability and Bayesian approach, interval mathematics, evidence theory, concepts of im-
precise probabilities and fuzzy randomness. These developments do not only deal with the analysis and
reliability assessment of structures under uncertainty but also include novel approaches for robustness
assessment and structural design [2].

The approach presented in this paper utilizes the uncertainty model fuzzy randomness. Uncertain input
quantities are taken into account as fuzzy random quantities, which include real random quantities and
fuzzy quantities as special cases. They are processed simultaneously within a fuzzy stochastic analysis
[8] to obtain uncertain structural responses and uncertain reliability levels that reflect both objective and
subjective information.

A viable method to determine the best design variant is an optimization task. While traditional opti-
mization tasks incorporate crisp parameter values, in the recent past optimization tasks are upgraded
to consider uncertain parameter values. Depending on the respective aim of the investigation, reliability
measures within an reliability based optimization, robustness measures within a robustness based op-
timization [4] or both of them within a reliability based robust optimization [7] may be evaluated. Based
on those approaches the optimization task can be extended to incorporate fuzzy random quantities.

The benefit of utilizing advanced uncertainty models in the metal forming design process is demon-
strated by way of an example. Thereby the data analysis, the modeling of fuzzy random input quantities
and the formulation of an appropriate optimization task are exemplarily shown.
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2 Uncertainty models for imprecise data

In the engineering practice the available information are generally affected by uncertainty. The selection
of an appropriate uncertainty model depends on the respective underlying nature. A rough distinction
may be done between aleatory uncertainty due to a pure random nature, detected with a sufficient size of
sample elements, and epistemic uncertainty due to imprecise, fluctuating, vague, incomplete, linguistic
or expert evaluated information. The available data for practical problems are frequently characterized
by uncertainty that comprises incomplete objective data. Simultaneously these information are dubious
and imprecise and may be adjusted by subjective evaluations. An uncertainty quantification of those
information with non-probabilistic methods only neglects the content of available information. Otherwise
utilizing pure probabilistic methods suggests knowledge which is absent. Thus, an uncertainty model
comprising objective as well as subjective information is required.

A commonly used probabilistic based method is the Bayesian approach [3]. This approach processes
subjective information on the basis of subjective probability using prior distributions. The shortcoming of
this approach arises from the description of subjective information with the aid of objective uncertainty
measures. Thus, a separation of objectivity and subjectivity is impeded. For instance, failure prob-
abilities, determined with the aid of the Bayesian approach, are represented by crisp values, without
reflecting the source of the respective uncertainty.

A rather appropriate modeling of uncertainty differs between aleatory and epistemic uncertainty utilizing
different uncertainty measures. This general approach is denoted by imprecise probabilities [16]. The
main idea is to measure the probability of an event within a lower and a upper bound.

One suitable mathematical model to evaluate imprecise probabilities is served by the approach of interval
probabilities. Thereby, with the aid of interval mathematics bounds of probability are specified. This
approach reflects the fact, that the observation of an random event can only be described imprecise. On
this account the probability of an uncertain quantity is not bounded to a crisp probability but rather to an
interval of probabilities. This dispose the potential to consider imprecise random quantities.

The advancement of the traditional probabilistic uncertainty model enables the additional consideration
of epistemic uncertainty. Thereby, epistemic uncertainty is associated with human cognition, which is not
limited to a binary measure. Contrary to this, interval mathematics are limited to a binary assessment.
Advanced concepts allow a gradual assessment of intervals. This extension can be realized with the
uncertainty characteristic fuzziness, quantified on the basis of fuzzy set theory [17, 1]. Hence, the
uncertainty model presented in this paper, fuzzy randomness, contains the model of interval probabilities
as special case.

The uncertainty model fuzzy randomness considers aleatory and epistemic uncertainty simultaneously.
It combines both components without mixing. In the results of a fuzzy random analysis the source of
uncertainty is always observable. In accordance to [9], fuzzy randomness may also be interpreted as
an imprecise probabilistic model considering simultaneously all possible probabilistic models that are
relevant to describe a problem. Additional, the appropriateness of each probabilistic model is assessed
by a gradual measure. The combination of fuzzy methods and probabilistic methods contains fuzziness
and randomness as special cases. As fuzzy randomness may account for aleatory and/or epistemic
uncertainty in an overall manner, it can be denoted as a generalized uncertainty model.

First ideas and definitions of fuzzy random quantities X̃ have been discussed in [6]. The enhancement
of describing fuzzy random quantities with α-level sets X̃α ∈ X̃ in [12] was the precursor for elaborating
basic concepts for engineering applications [8].

The definition of fuzzy random quantities are developed on the basis of the probabilistic concept. The
probability space is thereby extended by the dimension of fuzziness. Starting on the basis of real ran-
dom quantities, a fuzzy random quantity can be derived. As in probabilistic the space of random ele-
mentary events Ω and the fundamental set X = Rn describes a hyperplane Ω×X. Considering that in
real world applications realizations x ∈Rn of an elementary event ω ∈ Ω can only be observed impre-
cise, a membership scale may be added perpendicular to the hyperplane to assign fuzzy realizations
x̃(ω) = (x̃1, . . . , x̃n)⊆ Rn to each elementary event ω ∈ Ω, see Fig. 1.
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Figure 1: Fuzzy realizations x̃ of a fuzzy random quantity X̃

A fuzzy random quantity X̃ is the fuzzy result of the mapping

X̃ : Ω → F(X) (1)

with F(X) being the set of all fuzzy quantities x̃ on Rn.

Based on this definitions a fuzzy probability measure has been developed. A fuzzy probability distribu-
tion function F̃(x) is introduced as the set of probability distribution functions Fj(x) gradual assessed with
membership µ(Fj(x)). Since each Fj(x) describes precisely one trajectory, i.e. one probabilistic distribu-
tion function, the bunch of trajectories contained in F̃(x) comprises all possible probability models, see
also Fig. 2.

Figure 2: Fuzzy probability density function and fuzzy cumulative distribution function

The basis for a computational handling of fuzzy random quantities X̃ is the α-discretization [8] and the
bunch parameter representation [14], i.e. applied for a fuzzy probability distribution function

F̃(x) = F(s̃,x) = {(Fα(x); µ(Fα(x)) | Fα(x) = [Fmin,α(x); Fmax,α(x)];µ(Fα(x)) = α, ∀ α ∈ (0,1]} .

As the concept of fuzzy randomness contain the traditional probabilistic concept as special case, the
whole framework of the probabilistic concept may be adopted for the fuzzy random approach. Thus, a
fuzzy random function X̃(t) is defined as the fuzzy result of the mapping X̃(t) : T×Ω → F(X). The para-
meter vector t =

(
θ , τ, ϕ

)
of the parameter space T ⊆ Rm represents spatial coordinates θ = (θ1, θ2, θ3),

the time τ, and occasionally further parameters ϕ = (ϕ1, ϕ2, . . .).
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3 Uncertainty in structural analysis

3.1 General procedure

If the uncertainty of the input quantities of a structural analysis is described with the aid of fuzzy random
functions, the following problem is then to be solved for a crisp mapping model

FFSA : X̃(t)→ Z̃(t). (2)

The fuzzy random functions (structural input quantities) X̃(t) are mapped onto the fuzzy random functions
(structural responses) Z̃(t). As fuzzy vectors and real random vectors are special cases of fuzzy random
functions, these uncertainty models are also covered by Eq. (2). The mapping according to Eq. (2) is
the symbolic representation of a fuzzy stochastic structural analysis.

3.2 Numerical realization

It is intended to compute the structural responses Z̃(t) as fuzzy random vectors Z̃tr = Z̃(tr)| r = 1, . . . ,q1
with the fuzzy probability distribution functions F̃tr(z) = F̃(z, tr) = F(σ̃ r,z, tr) at q1 points tr in the parameter
space T. For this purpose q1 fuzzy bunch parameter vectors σ̃ r are to be determined, which comprise
a total of m1 bunch parameters σ̃1, . . . , σ̃m1 . The m1 fuzzy bunch parameters are combined in the fuzzy
vector σ̃ . The fuzzy stochastic structural analysis characterized by Eq. (2) has thus been transformed
into the mapping

FA : s̃ → σ̃ . (3)

An α-discretization [8] of the fuzzy bunch parameters s̃1, . . . , s̃n1 belonging to fuzzy probability distribution
functions F(s̃i,x, tr) yields the α-level sets S1,αk , . . . ,Sn1,αk for the level αk (Fig. 3). These α-level sets
together with the α-level sets Sr,αk | r = n1 +1, . . . ,n form the n-dimensional crisp subspace Sαk

. If one
element is selected from each α-level set, one crisp vector s in the subspace Sαk

is obtained.

With each set of crisp elements s1,j ∈ S1,αk , . . . ,sn1,j ∈ Sn1,αk constituting the vector sj ∈ Sα,k precisely one
trajectory Fti,j(x) ∈ Fti,αk(x) | i = 1, . . . ,p1 with the membership value µ(Fti,j(x)) = µ(s j) ≥ αk is simulta-
neously selected from each of the p1 fuzzy probability distribution functions (Fig. 3). The trajectories are
Fti,j(x) real-valued probability distribution functions. Each α-function set Fti,αk(x) comprises all trajecto-
ries of the fuzzy probability distribution function F̃ti(x) at the state ti ∈ T for the level αk.

Selecting one crisp point sj from the subspace Sαk
one real probability distribution function (trajectory) is

known for each fuzzy random vector X̃ti = X̃(ti). Moreover, one element from the respective α-level set
(for the same level αk) of each bunch parameter belonging to the fuzzy vectors, fuzzy fields, real random
vectors, and fuzzy covariances is to be selected. One stochastic structural analysis may now be carried
out for the crisp bunch parameter vector sj ∈ Sαk

.

The trajectories of the fuzzy probability distribution functions of F(σ̃ ,z, tr) the result vectors Z̃tr = Z̃(tr)
| r = 1, . . . ,q1 are designated by Ftr,j(z) | r = 1, . . . ,q1. For each defined α-level αk these are elements of
the assigned α-function sets Ftr,j(z) ∈ Ftr,αk(z). For determining the α-function sets Ftr,αk(z) the following
functional relationship concerning the trajectories may then be stated

(Ftr,j(z) | r = 1, . . . ,q1) = g(Ftr,j(x) | r = 1, . . . ,q1) . (4)

The solution of Eq. (4) may be obtained with the aid of the Monte Carlo simulation (MCS). Based on the
trajectories Fti,j(x) sample vectors are generated. Each sample vector represents a crisp input vector for
one deterministic structural analysis. The deterministic fundamental solution may be an arbitrary, linear
or nonlinear structural analysis, e.g. a Finite Element code.

The application of MCS results in a sample of result values for each trajectory Ftr,j(z) of the fuzzy ran-
dom result vectors Z̃tr = Z̃(tr). Statistical evaluation of these samples yields the trajectories in bunch
parameter representation. For each α-level αk the obtained bunch parameters are elements of the as-
signed α-level sets σ1,j ∈ σ1,αk , . . . ,σm,j ∈ σm1,αk of the fuzzy bunch parameters σ̃1, . . . , σ̃m1 constituting
the fuzzy vector σ̃ . Once the smallest and largest elements of the α-level sets σ1,αk , . . . ,σm1,αk have been
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Figure 3: Numerical realization of the fuzzy stochastic analysis

determined for each α-level αk, the fuzzy bunch parameter vectors σ̃1, . . . , σ̃q1 and hence the fuzzy prob-
ability distribution functions F̃(z, tr) = F(σ̃ ,z, tr) are then known. The search for the smallest and largest
elements of the bunch parameters is realized by applying α-level optimization, see Fig. 3, [8, 10].
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4 Optimization with fuzzy random quantities

On the basis of [2, 4, 7], the reliability based optimization is enhanced by the concept of imprecise prob-
abilities, utilizing the generalized uncertainty model fuzzy randomness [8]. Therefore, an optimization
task is formulated under consideration of fuzzy random quantities, yielding to both an fuzzy random ob-
jective function and fuzzy random constraints. Applying information reducing methods, e.g., determining
failure probabilities, the task is transferred into a nonlinear fuzzy optimization task.

The parameters of an optimization task are subdivided in design parameters xk,d, k = 1, . . . ,nx,d and a-
priori parameters xl,t, l = 1, . . . ,nx,t. While the quantities in the space of design parameters Xd are freely
selectable within user-specified ranges, the quantities in the space of a-priori parameters Xt are pre-
scribed and unchangeable. All parameters may be deterministic or uncertain as well as time-dependent.
Considering imprecise data the parameters xd and xt become fuzzy random variables X̃d and X̃t.

The numerical treatment of such an optimization task requires an affine transformation of the design
parameters. The transformation reads X̃d = xd1

· Ẽd +xd2
postulating fixed fuzzy parameters. Assum-

ing, that especially for engineering applications xd1
and xd2

are correlated, the transformation can be
performed with a unique parameter xd. Furthermore, Ẽd is invariant and thus becomes an a-priori para-
meter vector X̃E = ( X̃1,t . . . X̃nx,t,t , Ẽ1,d . . . Ẽnx,d,d).

The application of sampling schemes to incorporate fuzzy random a-priori quantities is enabled utilizing
a bunch parameter representation [14] X̃E = XE(s̃). Comprising fuzzy bunch parameters s̃ and the fuzzy
parameters x̃E the fuzzy vector s̃E = (s̃, x̃E) is constituted.

Incorporating fuzzy random quantities X̃E within an optimization task the deterministic objective function
z = fz(xd,xt) is transferred into a fuzzy random objective function Z̃ = fz(xd, X̃E) and the deterministic
constraints g = fg(xd,xt)≤ g∗ are transferred into fuzzy random constraints G̃ = fg(xd, X̃E)≤ G̃∗.

4.1 Imprecise optimal design

If the information content of randomness is summarized with the aid of failure probabilities the objective
function and the constraints are obtained as z̃ = fz(xd, s̃Ez) and g̃ = fg(xd, s̃Ez , s̃Eg)≤ g̃∗. In consequence,
the fuzzy stochastic optimization problem is transferred in a pure fuzzy optimization problem. Thereby,
the minimum is defined by

z̃min = {(zmin, µ(zmin))
| zmin = min fz

xd∈Xd

(xd,sEz) , fg(xd,sEg ,sEz)≤ g∗, µ(zmin) = µ(sE) (5)

∀sE ∈ s̃E, g∗ ∈ g̃∗
}

.

The respective optimal design x̃d,min is simultaneously obtained with

x̃d,min =
{
(xd,µ(xd)) | xd = f−1

z (z),µ(xd) = µ(z) ∀ z ∈ z̃min
}

. (6)

Due to the fact, that the mapping x → z is just unique and not one to one, x̃d,min is obtained as a non
convex fuzzy quantity. Actually, the treatment of non convex fuzzy quantities is not state of the art.

4.2 Application of fuzzy optimization

The application of fuzzy optimization methods aims on the determination of crisp design quantities with
respective result quantities to enable a decision making. For each design xd ∈ x̃d,min the fuzzy result
z ∈ z̃min is permissible, evaluated with respect to the constraints, with a particular membership µ(z).
This is proper from a mathematical point of view. But for engineering applications it can be worthwhile
to assign a unique fuzzy result quantity z̃ and statements about the permissibility to a discrete design
vector xd. The challenge of this modified optimization task is on the one hand to assess the permissibility
of a design and on the other hand to define relations between two fuzzy quantities due to alternative
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design variants. This can be performed by utilizing information reducing methods, which are inherently
user-defined and problem-dependent.

For the solution of nonlinear industry-sized problems on the field of civil and automotive engineering it is
suggested to use three criteria to assess alternative designs:

– permissibility, e.g. g̃− g̃∗ | g̃ = fg(xd, s̃Eg , s̃Ez)→ min, to comply with the constraints. This presuppose
a metric to determine the distance between fuzzy quantities and furthermore measures, to evaluate
the obtained distance.

– minimization, requiring defuzzification methods, e.g.
∫

z ·µ(z)dz · (
∫

µ(z)dz)−1 → min

– robustness assessment utilizing robustness measures, e.g.
∫

(z− z̄)2 ·µ(z)dz · (
∫

µ(z)dz)−1 → min

Utilizing these three criteria the optimization task is converted in a multi-criteria optimization task, while
the quoted order suggests a weighting.

5 Design of a metal forming process

In this example an appropriate design of a metal forming process, see Fig. 4, should be determined.
The aim is to identify a setting of design quantities whose results comply with reliability requirements
in a best possible manner. Among all input quantities, sixteen are indicated to be sensitive to the

Figure 4: Metal forming device and component part

result quantities and thus to influence the reliability predominantly, elucidated in detail in [11]. These
are material parameters for the blank (DCO6(1.0873)) to describe the yield strength, the elasto-plastic
hardening and anisotropic effects. In special, these are the parameters of the swift law Rp, n, K and the
anisotropic coefficients r0, r45, r90. Furthermore, variations of the manufacturing process parameters,
like the friction coefficient µ, the draw bead forces and the binder forces, affect the performance of
the deep drawing process. At least spatial perturbations of the initial shell thickness, caused by the
production process of the blank itself, have to be considered. They are modeled with the aid of fuzzy
fields [8].

On account of a design process, a distinction of the input quantities in design quantities xd, which may be
freely selected during the design process, and invariant a-priori input quantities xl,t, which are prescribed
and non-alterable, have to accomplished. Design quantities xd are the mean value of the binder force
x1,d and the mean values of the draw bead forces x2,d, . . . , x7,d, see also 4. The respective design ranges
are predefined with intervals as follows: x1,d = [1400, 2400], x2,d = x3,d = x7,d = [20, 200], x4,d = [50, 120],
x5,d = [60, 120], x6,d = [70, 130]. A-priori input quantities are the invariant a-priori parameters itself and
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the remaining uncertainty of the design quantities. The quantification of the uncertain input quantities
is accomplished under consideration of the respective source of uncertainty. Hence, the generalized
uncertainty model fuzzy randomness [8] is utilized, see Table 1. Thereby, it is assumed that the random-
ness in respective input parameters can be modeled with a normal distribution.

Table 1: Fuzzy random input quantities
fuzzy random quantity

normal distribution
mean value standard deviation

yield strength fy f̃(x1) 0.14 < 0.0067; 0.008; 0.01 >
strength coefficient K f̃(x2) 0.55 < 0.0367; 0.044; 0.055 >
hardening exponent n f̃(x3) < 0.23; 0.275; 0.3 > 0
friction coefficient µ f̃(x4) < 0.05; 0.075; 0.1 > 0

perturbation longitudinal p1 f̃(x5) <−0.005; 0.0; 0.005 > 0
perturbation lateral p2 f̃(x6) <−0.005; 0.0; 0.005 > 0
material parameter r0 f̃(x7) 2.25 < 0.0833; 0.1; 0.125 >
material parameter r45 f̃(x8) 1.7 < 0.1; 0.12; 0.15 >
material parameter r90 f̃(x9) 2.85 < 0.167; 0.14; 0.175 >

draw bead force 1 f̃(x10) x2,d < 4.0; 5.0; 6.0 >
draw bead force 2 f̃(x11) x3,d < 4.0; 5.0; 6.0 >
draw bead force 3 f̃(x12) x4,d < 4.0; 5.0; 6.0 >
draw bead force 4 f̃(x13) x5,d < 4.0; 5.0; 6.0 >
draw bead force 5 f̃(x14) x6,d < 4.0; 5.0; 6.0 >
draw bead force 6 f̃(x15) x7,d < 4.0; 5.0; 6.0 >

binder force f̃(x16) x1,d < 40; 50; 60 >

Figure 5: Fuzzy probability density function f̃ (x8)

The optimization under consideration of fuzzy random quantities is performed by means of generic
optimization algorithms, fuzzy structural analysis, and direct Monte Carlo simulation. The application of
those methods requires a high numerical effort. Hence, methods to improve the numerical efficiency
are inevitable. Here, a response surface approximation on the basis of artificial neural networks [15] is
applied.

As a result of each fuzzy stochastic analysis for a crisp design xd, under consideration of X̃E, the maximal
shell thickness reduction Z̃ is evaluated. The maximal shell thickness reduction represents in a crude
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way a result to appraise the permissibility of a design. Specifying results of more than 20% (normalized)
as failure, a fuzzy failure probability P̃f can be evaluated.

On the basis of the suggested 3 criteria optimization (see Sec. 4.2) the assessment of alternative design
variants is enabled. In the absence of design constraints the objective is to minimize the largest possible
failure probability Pf,α=0,r. Thereby, an inappropriate robustness, evaluated with

∫
Pf

µ(Pf)dPf, is penalized.

In the process of optimization the fuzzy failure probability P̃f decreases, see Fig. 6.

Figure 6: Fuzzy failure probabilities in selected optimization states

The optimal design is determined with xd,opt = [25.23; 200.0; 50.0; 60.0; 77.5; 20.0; 1414.81]. The respec-
tive result of the fuzzy stochastic analysis is depicted in Fig. 7 typified by the fuzzy cumulative distribution
function F̃(z) and the fuzzy failure probability P̃f.

Figure 7: Result of optimal design; fuzzy cumulative distribution function and fuzzy failure probability

The result shows, that imprecisions in specifying input quantities consequently end in imprecisions in
determining probabilities of failure. The data model fuzzy randomness enable the consideration of those
imprecisions within the numerical simulation.
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6 Conclusions

In this paper a computational algorithm for the design of metal forming processes incorporating fuzzy
random quantities is presented. Thereby, the applied generalized uncertainty model fuzzy randomness
is capable to represent objective information as well as dubious, incomplete, fluctuating, and fragmentary
information. The numerical realization with the aid of fuzzy stochastic analysis provides an appropriate
computational method to take account of uncertainty of different characteristics. Randomness, fuzziness
and fuzzy randomness can be considered simultaneously. The presented concept is generally applicable
in combination with arbitrary computational models. The application of the uncertainty model fuzzy
randomness within a design process for industry-sized problems enables a better insight into the specific
problem. In consequence the results and prognosis bases on truly available information and ease the
respective decision making to ensure a high quality of the subsequent product. The applicability is
demonstrated by way of example for a reliability assessment of a metal forming process.
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