11th LS-DYNA Forum, 9 - 10 October 2012, Ulm Germany CAE of Organo-Sheet Material (Thermoplastic Woven Glass Composite)

09 October 2012

Engineering Design Department Vehicle CAE Jerome Coulton

Table of contents

I. Introduction

- 1. Background
- 2. Proposed Application
- 3. Material Details

II. Motivation

- 1. CAE Model Targets
- 2. Project Plan

III. Material Testing

- 1. Test Plan
- 2. Tensile Test Results

IV. Material Modelling

- 1. CAE Correlation Results
- V. Prototype Parts
 - 1. CAE Correlation (Polyamide)
 - 2. Test Comparison, PA vs. PP

VI. Structural Application

1. CAE Correlation (Polyamide)

VII. Conclusion and Outlook

I Introduction

1. Background

- In the global quest to reduce CO2 emissions, via reduced vehicle mass, there is an increasing use of high strength glass composites in the EU.
- Today there has been an innovation with the generation of new woven fibre composites with thermoplastic matrices (organo-sheet) and associated forming processes.
- Of these, glass based woven composites have been identified for high strength with low specific weight and cost.
- ✤ EU Serial Examples :
 - ➢ BMW M3 Bumpers
 - ➢ Audi A8 Frontend Module
- EU Prototype Examples :
 - ➢ Audi A4 Bumper Armature
 - ➢ Audi rear door anti-intrusion beam
 - Audi rear seatback

MOTOR GROUP

I Introduction

2. Proposed Potential Application

- Rear seatbacks can be designed with different materials e.g.
 - Standard grade steel
 - High strength steel
 - ➤ Aluminium
 - Plastic composite
- The redesign of the rear seatbacks to use standard strength compared to high strength steel resulted in a mass reduction of 2 kg for the 60% part.

8.5 kg

6.5 kg

4.5 kg

Light

- ✤ Assuming typical overmold materials:
 - ➢ Glass organo-sheet with PA6 matrix
 - ➢ PA6 GF30 ribs
- Results in a potential mass saving of 4 kg (47%) for the 60% part compared to the original steel design.

мотор срони

I Introduction

3. Material Details

- Organo-sheet is a woven material:
 - ≻ Fibre:
 - Glass
 - Carbon fibres
 - > Matrix
 - Polyamide
 - Polypropylene
- Unlike steel, the material stiffness is anisotropic i.e. the stiffness and strength is unequal in different directions. This makes CAE much more difficult
- Unfortunately there are no openly available validated material models for organo-sheet
 - This creates the need to generate new validated material models to predict part performance

Organo-sheet weaves

Tensile Tests - Effect of Fibre Angle

мотов бвоце

II Motivation

1. CAE Model Targets

- CAE design optimization requires accurate prediction both:
 - Below material yield point
 - 2 Between yield point and ultimate failure
- At the start of the project two criteria were defined:
 - 1. Desired CAE Accuracy:
 - Elastic Design >90% (steel >95%)
 - Plastic Design >70% (steel >85%)
 - 2. Compare two proposed matrix systems:
 - Polyamide vs. Polypropylene (Potential cost down)

Tensile Tests - PA Organo-Sheet

OEM	Elastic Design – no damage	Plastic Design – damage & failure
#1	90 %	90 %
#2	95 %	75 %
#3	80 %	23 %

CAE Composite accuracy reported at VDI Conference 2011

Comparison of CAE Accuracy at EU OEMs

II Motivation

2. Project Plan

- The development of the validated material * models was achieved in three phases:
 - Material modelling \bigcirc
 - 2 Prototype part modelling
 - 3 Real structure application
- Within each of these three phases there ** were three sub activities:
 - (a) Testing
 - (b) CAE modelling and simulation
 - Validation (c)
- All three phases interlinked using the same ** data:

 \blacktriangleright Traceable transparency of data source.

III Material Testing

1. Test Plan

✤ Goal of testing:

- ➢ Extract parameters for LS−DYNA
- Measure strain rate sensitivity
- Compare material performances
- ✤ Required Data:
 - ➤ Stiffness
 - ➢ Strength
 - ≻ Damage
- ✤ Orientation effect:
 - ≻ 0/45/90°
 - Tension/compression
- ✤ The materials were tested in 3 steps:
 - ➤ 1-D: Tension & Compression
 - ➢ 2-D: Bending
 - ➢ 3-D: Puncture

	Loading		Φ - Material	Test Velocity		
			Orientation	Quasi-Static	High Velocity	
	Tensile		0/90°		Polyamide	
1-D		Shear	45°		& Polypropylene	
1-0	Compression		0/90°			
		Shear	45°	Polyamide &	Polypropylene	
2-D	Bending		0/90°	Polypropylene		
2-0		Shear	45°		Polyamide	
3-D	Plate Puncture		N.A.		& Polypropylene	

Material Test Matrix

Material Test Configurations

III Material Testing

2. Tensile Test Results

- Comparison of polyamide and polypropylene based materials:
 - The higher shear stiffness and strength of the polyamide matrix based material results in a more robust material than the softer and more ductile polypropylene matrix based material.

Dynamic Material Properties (strain rate 10 ε/s)						
Parameter		Polyamide	Polypropylene			
0	Е	100%	95%			
Stiffness	G		100%			
	σ		107%			
Strength	τ		69%			
Shear Failure S	Strain		125%			

- Moisture significantly effects polyamide based material (initial vs. final CAE model):
 - Lower Stiffness
 - Greater Ductility
 - Higher Strength

Comparison of Initial and Final Polyamide Data

IV Material Modelling

CAE Correlation Results

- Basic Material data extracted from 1-D tests
- The damage and breaking parameters:
 - Model the bending and puncture tests
 - Same mesh size as for CAE application
 - Critical for element erosion tuning
 - Reverse engineering to match tests Simultaneously for 1-D, 2-D & 3-D
- ✤ Material Models Meet Targets:
 - ➢ Increased CAE Accuracy:
 - Elastic design 92% ↑13% (target 90%)

Material		PA matrix			PP matrix	
Load Case		Initial	Final	Change	Initial	Final
A. Elastic design		Target	t >90%	>10%	Target	t >90%
1	Tension/Compression	79%	92%	13%	n.a.	91%
В.	Plastic Design	Target >70% >10%		Target	t >70%	
1	Tension/Compression	77%	88%	11%		89%
2	Bending	47%	91 %	44%	n/a	74%
3	Puncture	40%	79%	39%		77%

Polypropylene Puncture Test Accuracy

V Prototype Parts – Erlangen Traeger

1. CAE Validation (Polyamide)

- Correlation, Prototype Part tests:
 - ➤ Average 77% ↑12% (target 70%)
 - ➢ Worst case 71% ↑17% (target 70%)

Loading		Φ – Material Orientation	Agreement	
	LUauiiig	Orientation	Initial	Final
static	Bending - n	N.A. (0/90° weave)	54%	71%
Quasi-si	Bending - u		68%	83%
	Torsion		75%	80%
ynamic	Bending - n		57%	74%
Dyna	Bending - u		72%	75%

- ✤ Key to obtaining good agreement:
 - Positioning of the organo-sheet neutral axis within the part section;
 - Matching the strain rates in the measured parts and the numerical simulations;
 - Material properties of the over-moulding strain rate dependent properties and fibre orientations.

Comparison of Prototype Part Performances

V Prototype Parts – Erlangen Traeger

2. Test Comparison, PA vs. PP

- Prototype parts made from:
 - Thermoformed Organo-sheet (woven long fibres)
 - Injection moulded ribs (short fibres)

Polypropylene has lower mass and cost:

	PA	PP
Mass	100%	81%
Cost	100%	72%

- ✤ Part strength driven by rib performance
 - Polyamide ribs best: higher strain to failure

Polyamide needed for high performance

	Looding	Stiffness		Strength	
	Loading	PA	PP	PA	PP
-static	Bending - n	100%	100%	100%	78%
si-s	Bending - u	100%	100%	100%	85 %
Quasi-	Torsion	100%	119%	100%	79%
Dynamic	Bending - n	100%	100%	100%	59%
Dyna	Bending - u	100%	100%	100%	77%

Comparison of Prototype Part Performances

VI Structural Application

CAE Correlation (Polyamide)

✤ Overall CAE Accuracy:

	Deformation		Cracking (Failure)		
			Load	Position	Timing
Luggage	Z-axis	98%	N. A.	✓	99%
Headrest	X-axis	95 %	No cracking	None	N.A. (Quasi-
Seatbelt	X-axis	97%	99%		static)
Anchorage	Z-axis	100%	99%	· · · · · · · · · · · · · · · · · · ·	

Tested Load Cases

Crack Location

Seatbelt Anchorage Structural Performance

VII Conclusion and Outlook

Conclusions

- ✤ All main targets met:
 - Increased CAE Accuracy:
 - Elastic Design 79% → 92% ↑13% (target 90%)
 - Plastic Design 40% → 79% ↑39% (target 70%)
 - Compare PA (polyamide) vs. PP (polypropylene)
 - For high strength applications polyamide based organo-sheet hybrid parts is best.
 - 1. Part strength driven by rib performance

Outlook². Polyamide ribs best: - higher strain to failure

- With these new material models it was possible accurately predict the performance, stiffness and strength, of organo-sheet hybrid parts and thereby optimize their performances including cost and mass.
- Recommendations for Future work:
 - Evaluate new LS-DYNA material models such as Camanho & Pinho

OEM	Elastic Design	Plastic Design – damage & failure
# 1	90 %	90 %
# 2	95 %	75 %
HMETC	91 %	74 %
# 3	80 %	23 %

Comparison of CAE Accuracy at EU OEMs

Criteria	PA Matrix	PP Matrix
Mass		81 %
Mat. Cost	1000	75 %
Stiffness	100%	100 - 119 %
Strength		59 - 85 %

Comparison of Prototype Part Performances

Criteria	Target	Plastic Composite	
Cost	→ 0 %	0%	
Weight	↓30%	$\downarrow 47\%$	
Load Case 1 (Quasi Static)	017	OK	
Load Case 2 (crash)	OK (stiffness)	(stiffness) strength	
Load Case 3 (Quasi Static)	strength		

Application: Targets and Achievements (WRT steel)

- \clubsuit The work presented is the result of a consortium between :
 - Hyundai Motor Europe Technical Center GmbH
 - Johnson Controls GmbH
 - ► BASF SE
- The author would like to especially express his thanks to:
 - ➢ Matthias Goebel
 - Daniel Fertig

Attachments

- 1. Manufacturing Process
- 2. Material Models
- 3. Erlangen Traeger CAE Details

Annex 1. Manufacturing Process

SpriForm (in-mold forming)

- Woven glass composites with a thermoplastic matrix is generically called "organo-sheet" and consists of:
 - Plain woven (filament glass) fibre mat.
 - > Polyamide-6 or Polypropylene matrices.
- A particular advantage of these organosheets is that they can be thermoformed and then over-moulded in one tool resulting in fast cycle times i.e. low production costs.
- In order to take advantage of the high strength of long fibre thermoplastic material systems and design new products, CAE optimisation of proposed designs are necessary.

The SpriForm Process (in-mold forming)

Annex 2. Material Models

Required Material Models

- Theoretically three models are required:
 - 1. Organo-Sheet
 - 2. Joint between organo-sheet and ribs
 - 3. Over moulded ribs etc.
- 1. Organo-Sheet
 - # layers via *PART_COMPOSITE
 - Each layer modelled using *MAT_LAMINATED_COMPOSITE_FABRIC
 - (Best ability to model known shear behaviour)
- 2. Joint
 - No need to model as no failure observed -Knitting of short fibres into long fibre mat.
- 3. Over-moulded ribs
 - Modelled via Ultrasim
 - Includes:
 - Fibre Orientation
 - Hydrostatic state Loading direction
 - Strain rate

Hybrid Material Model

Over-Moulded Ribs, Material Model

Annex 3. Erlangen Traeger CAE Details

Over Moulded Prototype Parts

- Prototype part made from two components:
 - Thermoformed Organo-sheet (long fibres)
 - Injection moulded ribs (short fibres)
- Fibre angles due to processing:
 - Organo-sheet: Thermoformed
 - Aligned with tool 0/90°
 - Ribs: Injection Moulded
 - Radial fill pattern

- ✤ CAE Material model for Ribs (Ultrasim):
 - 1. Real Orientation (via Moldflow)
 - 2. Coupling to LSDYNA:
 - Inclusion of fibre orientation
 - Inclusion of knit line effects.
 - ➢ Inclusion of strain rate effects

19

Prototype Part – Erlangen Traeger

