

Practical Guidelines for Hot Stamping Simulations with LS-DYNA

David Lorenz DYNAmore GmbH

Outline

- 1. Important process steps in hot stamping
- 2. Transfer and gravity simulation in hot stamping
- 3. How to model proper material behavior
- 4. Thermal coupling effects
- 5. Notes on thermal contact
- 6. Solution methods for cooling simulations

Inportant Process Steps in Hot Stamping

Transfer of the hot blank to the die

gravity loading of the hot blank on the die

Transfer Step in Hot Stamping Simulation

During transfer from furnace to the press blank temperature drops due to radiation and convection

We can run this step thermal-mechanical coupled to account for the shrinkage of the blank due to thermal strains

*INTERFACE_SPRINGBACK_LSDYNA

*CONTROL_IMPLICIT_INERTIA_RELIEF

- static solution without applying SPCs
- advantageous in unconstrained springback calculation
- eliminates all rigis body modes from the stiffness matrix
- All eigenfrequencies below the threshold frequency are treated as rigid body modes and are eliminated
- DYNA runs an eigenvalue analysis prior to the static solution

Why not using SPCs applied to single nodes of the blank ?

- all SPCs are written into the dynain file
- these SPCs become redundant in following gravity and forming simulation
- if you do not notice that SPCs are in the dynain file you may run into convergence trouble in the gravity step

gravity deformation appears immediately

blank typically remains 1 ... 3 s in ^thid position till upper die moved down run in a few coupled steps to account for temperature loss in contact

gravity deformation appears immediately

blank remains typically 1 ... 3 s in till upper die moved down

run in a few coupled steps to account for temperature loss in contact

Why is the gravity simulation not in agreement with real process ?

- the elastic modulus of hot steel is still higher than cold aluminum
- but the yield point at high temperatures is at very low stress level

Do we accurately capture this effect in our material input ?

Modelling Material Behavior

Solving this shortcoming in material input

- lower the yield point for the relevant temperatures
- bring your simulation into better agreement with your observations and experiences in real process

... or ...

- make a simple experiment
- validate your material input in agreement to experiment

How to get the Cowper Symonds Parameters from given yield curves ?

$$\sigma = \sigma_0 \left[1 + \left(\frac{\dot{\varepsilon}}{C} \right)^{\frac{1}{p}} \right] \qquad \longrightarrow \qquad \frac{\sigma - \sigma_0}{\sigma_0} = \left(\frac{\dot{\varepsilon}}{C} \right)^{\frac{1}{p}} = \dot{\varepsilon}^{\frac{1}{p}} \cdot C^{\frac{-1}{p}}$$

logarithmizing gives an easy to solve linear equation

$$\ln\left[\frac{\sigma-\sigma_0}{\sigma_0}\right] = \frac{1}{p}\ln\dot{\varepsilon} - \frac{1}{p}\ln C$$

for several plastic strains calculate *C* and *p* from slope *m* and intercept *b*

$$p = \frac{1}{m} \qquad \qquad C = e^{-b \cdot p}$$

How to get the Cowper Symonds Parameters from given yield curves ?

- calculate C and p at different plastic strains (0.1, 0.2, 0.3, ...)
- we need equally spaced yield curves at different strain rates
- curve fit of each yield curve (Swift, Gosh, Hocket-Sherby etc.) necessary
- We end up with **C** and **p** as functions of \mathcal{E}_{pl}

12

What if we havenot enough data (Numisheet Benchmark)?

yield cuves provided by Numisheet BM03

$$w_{pl} = \rho c_p \Delta T = \eta \int_{\varepsilon_{eq}} \sigma_{eq} d\varepsilon_{eq}$$

- can cause trouble if strain localization starts
- localization results in high local strain rates
- Cowper-Symonds scales up stress and thus plastic work
- high local temperature rates
 - thermal solver reduces time step
 - blank temperature can climb above initial value

→ we won't loose accuracy if we neglect this effect

⇒ simulation is more robust without work to heat conversion

Thermal Coupling Effects

Is it necessary to include friction heat ?

- friction coefficient is very high (0.3 ...0.4)
- seems reasonable to include it

- very high local contact forces due to mass and speed scaling
- simple coulomb law predicts high friction energy
- can cause local temperature peaks in contact surface
- temperature fringes do not look reasonable

⇒ in real life friction force is limited by blank yield stress
⇒ more reliable without friction energy conversion

Application of coupling effects in cold stamping of high strength steel

work to heat in blank

friction to heat in die

Notes on Thermal Contact

Use of thermal contact to enhance our modelling skills

- Die Surface Geometry accurately modeled with Shell Elements
- Die Volume Geometry modeled with Volume Elements Alignment of meshes ?
- Shell and Volume Mesh coupled with contact definition

- heat transfer from blank to die surface shell by thermal contact
- heat dissipation into the dies by thermal contact between shell and volume mesh

Use of thermal contact to enhance our modelling skills

Set HTOOL to a very high number to get a thermal equivalent to tied contact HTOOL ~ 50.000 W/m²K

Notes on Thermal Contact How to model gap heat transfer ? $h_{gap} = \frac{k}{L_{gap}} + f_{rad} (T + T_{\infty}) (T^{2} + T_{\infty}^{2})$ Very sensitive to small gaps

→ do not use radiation term with °C scale

Notes on Thermal Contact

h

h_{gap}

How accurate is gap heat transfer ?

European standard EN 10143

Table 4: Thickness tolerances: EN 10143 : 2006: Rp0.2>360N/mm² and <420N/mm²

Nominal thickness		Normal tolerances for a nominal width of			Special tolerances (S) for a nominal width of			d
		≤1200	>1200	>1500	≤1200	>1200	>1500	
			≤1500			≤1500		
>	\leq	±	±	±	±	±	±	
0.35	0.40	0.05	0.06	0.07	0.040	0.045	0.050	
0.40	0.60	0.06	0.07	0.08	0.045	0.050	0.060	•
0.60	0.80	0.07	0.08	0.09	0.050	0.060	0.070	
0.80	1.00	0.08	0.09	0.11	0.060	0.070	0.080	
1.00	1.20	0.10	0.11	0.12	0.070	0.080	0.090	•
1.20	1.60	0.13	0.14	0.16	0.080	0.000	0.110	
1.60	2.00	0.16	0.17	0.19	0.090	0.110	0.120	no
2.00	2.50	0.18	0.20	0.21	0.120	0.130	0.140	Nu
2.50	3.00	0.22	0.22	0.23	0.140	0.150	0.160	

d p

nominal thickness of Numisheet BM3 1.95 mm

USIBOR as delifered $R_{p0.2} = 350...550 \text{ MPa}$

> uncertainty in nominal thickness has strong impact

higher sophisticated formulations overstate second order effect of gap heat transfer

Cooling Simulation Solution Methods

Cooling Simulation Solution Methods

Cooling Simulation Solution Methods

Dynamore GmbH

Industriestraße 2 70565 Stuttgart http://www.dynamore.de

David Lorenz david.lorenz@dynamore.de