

DynaWeld GmbH & Co. KG Süd: Herdweg 13, D-75045 Wössingen Nord: Hermann-Löns-Straße 3A, D-21382 Brietlingen E-Post: info@dynaweld.de Web: www.dynaweld.eu

Anwendungsbeispiele

der Schweißsimulation und Wärmebehandlungssimulation

Dr.-Ing. Tobias Loose

Wo liegen die Grenzen

- Modellgröße
 - z.B. alle Schweißnähte eines ganzen Schiffes
 - Berechnungszeit
 - Rechnerkapazität
- Methoden
 - Vereinfachende Methoden ermöglichen die Berechnung größerer Bauteile
 - Vereinfachende Methoden liefern geringere Ergebnisqualität
- Kopplung physikalischer Vorgänge und Detaillierung der Modelle
 - Je komplexer das Modell desto eher ist die Anwendungsgrenze erreicht:
 - Thermisches Modell
 - Mechanisches Modell
 - elektrisches Modell
 - Werkstoffmodell
 - Strömungsmodell
 - Erstarrungskinetik
 - Optische Effekte
- Kosten
- Fachpersonal

Anwendungsgebiete

- Verzugsberechnung
 - Optimierungsmaßnahmen, Verzugskompensation
- Prozess, Prozessparameter
 - Schmelzbadausbildung
 - Schweißlinse
 - Prozessfenster
- Mechanische und Metallurgische Eigenschaften
 - Gefüge
 - Spannungen, Dehnungen, plastische Verfestigung
- Wärmeführung
- Bauteilzustand als Ausgangszustand weiterer Berechnungen
 - Festigkeitsanalyse
 - Tragfähigkeitsberechnung
- Gekoppelte Simulation mehrerer Fertigungsschritte (Prozeßkette)
 - Wärmebehandlung, Schweißen, Umformen, Nachbehandlung

Welding of a T-Joint

- Double sided T-Joint a = 4 mm
- Plate S355 thickness 8 mm
- 3 Tacks double sided
- Travel speed 80 cm/min
- Current: 390 A
- Voltage: 30 V
- Start Time Tack 1:0 s
- Start Time Tack 2: 20 s
- Start Time Weld 1: 1000 s
- Start Time Weld 2: 1023 s
- Weld 1 and Weld 2 have the same travel direction

Input-Parameter SimWeld

Process simulation with SimWeld

Workpiece parameters (Ctrl + 1) Geometry													
EN ISO EN ISO 9692-1: 2003 (D)													
Joint type	Square edges (3.1.1)		~]									
width	40,00 ÷ ÷ [mm]	height	-1.00 + +	[mm									
t 1	8,00 🚔 🖨 [mm]	12	8,00 🚔	[mm									
Ь	0,00 ÷ ÷ [mm]	с	-1,00 + +	[mm									
radius	-1.00 ÷ ÷ [mm]	е	-1,00 💠 🜲	[mm									
alpha	90,00 🚔 🛟 [°]	beta	-1,00 + +	[*]									
🖌 Left pla	ate visible	🖌 Rigł	nt plate visibile										
Material													
<u>Plates</u>	S355		~]									
Position													
Туре	Custom		~										
across	45,00 * * [*]	along	0,00	[*]									

Sk Drocess	narameters (Ctrl + 2) ×
Process parameter	parameters (cur + 2)
Process parameter	5
weiding speed	80,00 v v [cm/min]
Initial temperature	20,00 ≑ [°C]
Simulation Options	
	Consider gap
Calculation length	User defined V
	100,00 🔹 💌 [mm]
Mesh density	normal (1.0x) v
	Resources: medium Accuracy: medium
	* Cancel
<u> </u>	<u> </u>

Torch param	eters (Ctrl + 3)	
▼ Wire		
Diameter	1.6 🗸	[mm]
<u>Material</u>	SG-Fe 🗸	
	Wire initial heating	
Contact noz. t.	20 🜲 🜲	[°C]
Position		
X	0,00	[mm] \A Z
Y	0,00	[mm] 7X
L	20,00 🚔 🖨	[mm] Y >
R	20,00	[mm]
🔻 Angle		
Along	0 📫 🖨	[*]
Across		[*]
Equipmen	t	
▼ Power so	urce	
Select	Custom	¥
Process type	Normal	~
Wire feed	7,0 🚔 🖡 [I	m/min]
Voltage	30,0 🚔 🖨	[V]
Choke	30,0 🚔 🖨	[%]

SimWeld results

Temperature

z-Distortion at evaluation path

transformed to flat left side

9

Carbody sheet

Carbody sheet

Welding and buckling z-displacement 5-times scaled

Process chain welding - forming

Quenching of a gear

Quenching of a gear made of S355 Results of heat treatment simulation

Martensit (right) Hardness HV (bottom left) Yield (bottom right)

Laserstumpfnaht ohne Zusatzwerkstoff

Results of Process Chain Simulation Heat Treatment - Welding

Resistance spot welding electrical – thermal – mechanical – coupled

_
Temperature, outer
1.773e+03
1.698e+03
1.623e+03
1.548e+03
1.473e+03
1.398e+03
1.323e+03
1.248e+03
1.173e+03
1.098e+03
1.023e+03
9.480e+02
8.730e+02
7.980e+02
7.230e+02
6.480e+02
5.730e+02
4.980e+02
4.230e+02
3.480e+02
2.730e+02

Time = 0 Contours of Temperature, outer min=293.15, at node# 757 max=293.15, at node# 757

Calibration of contact resistance

Calibration of contact resistance

- impuls of constant current
- hot test no nugget
- calibration of "temperature"-parameter

Weld of a pipe with 40 mm wall thickness made of Alloy 625

Weld of a pipe with 40 mm wall thickness made of Alloy 625 - 60 Layer GMAW

Multilayererd weld T-Joint with large plate thickness

2D plain strain Plate: 300 x 80 mm Stiffener: 150 x 24 mm Fillet Weld: a = 13 mm Material: 1.4301

Tack a = 1,4 mm with failure on strain KFAIL = 0,25 m/m

Initial gap between stiffener and plate: 0,1 mm

Symmetry boundary conditions on left and right side.

Multilayererd weld T-Joint with large plate thickness

Multilayererd weld T-Joint with large plate thickness – plastic strain

Validierung IIW Round Robin Versuch

- Plate with the dimensions 270 x 200 x 30 mm³ with V/U-shaped notch
- Austenitic stainless steel (316LNSPH, Re = 275 MPa)
- 2 Layer weldings of the notch with same material: 316L
- TIG Welding with
 U = 9 V, I = 155 A, v = 0,67 mm/s

Longitudinal residual stresses

Fig. 9 Measured and calculated longitudinal residual stresses along a line transverse to the weld seam

 Loose, T. ; Sakkiettibutra, J. ; Wohlfahrt, H. : New 3D-Calculations of residual stresses consistent with measured results of the IIW Round Robin Programme.
 In: Cherjak, H. (Ed.) ; Enzinger, N. (Ed.) : Mathematical Modelling of Weld Phenomena Bd. 9, Verlag der Technischen Universität Graz, 2010

Validierung IIW Round Robin Versuch

Temperature – Equivalent stress Transversal stress – Longitudinal stress

Transformation effects

Transformation strain steel

Heating of optical components laseroptic – focus shift

SmartScan

Simulation of temperature field and heating due to

laser load of optic elements.

Gefördert durch:

Bundesministerium für Wirtschaft und Energie

aufgrund eines Beschlusses des Deutschen Bundestages

Das Projekt wird gefördert von der AIF Projekt GmbH, ZIM - Kooperationsprojekte, Tschalkowskistrape 49, D-13156 Berlin im Rahmen des Förderprogramms "Zentrales Innovationsprogramm Mittelstand" des Bundesministeriums für Wirtschaft und Energie (BMWi) - Fördermodul FuE-Kooperationsprojekte Förderkennzeichen VP3018202NT4

Experimental measurement validated by simulation:

Heating of optic due to laser for welding

Welding of a car door 1st weld sequence

10th weld sequence

Wärmeführung

exemplarischer Temperaturverlauf für MSG in der Wärmeeinflußzone (dünnwandig)

Temperatur in °C

34

Temperaturverlauf im Schmelzbereich

Temperaturverlauf im Schmelzbereich

Temperaturverlauf im Schmelzbereich

- Auswirkung des Schweißtemperaturzyklus auf die
- Mikrostruktur
- und die mechanisch technologischen Werte umwandelnder Stähle

Auswirkung des Schweißtemperaturzyklus auf die **Mikrostruktur** und die mechanisch technologischen Werte umwandelnder Stähle

WeldWare

Charge – Chemische Analyse Microstruktur – Mechanische Eigenschaften

Datenbank:

- Vielzahl gemessener Schweiß-ZTU Diagramme durchgeführt von der SLV Mecklenburg Vorpommern
- Regressions-Analyse zur Berechnung von Zwischenwerten
- Mikrostruktur / Gefügezusammensetzung in Abhängigkeit der Abkühlzeit T_{8,5-5}
- Mechanische Eigenschaften bei Raumtemperatur in Abhängigkeit der Abkühlzeit T_{8,5-5}

Wärmeführung:

- einfache Berechnung der Abkühlzeit
 - Bestimmung der Vorwärmtemperatur

mechanisch technologische Eigenschaften am Beispiel eines S690QL

Gesells Schweißtech	chaft für Schweißtechnik hnische Lehr- und Versuchsanstalt SLV D		GSI SLV						١	Nerks	toffprüf	fbe	richt		
· 2 0 1	6 0 0 2 5 5 0 3 0 5 8 0 0 0 N	ÜŅ.				Duisbu	urg								
Werks Material test	toffprüfbericht Nr. 2	016-5	50-3058/000.	1 Ent	wurf Se	ite 1 ge 1	von 17								
Auftraggel Client	ber: Sonderlehrgang "Das Messer	der Stre	ckenenergie ist doch	so einfach!	?"										
Bestell Nr.			Eingangsdatum:												
Werkstoff: Material	S690QL (Kunder	nangabe)	Bemerkung:												
Prüfer: Operator: Weitere Prüf Additional tests	Herr Thiel / Herr Gube Mr. Thiel / Mr. Gube fungen Seite s see page 2-3 Härteprüfung Hardness test		Prüfdatum: Date of testing:	01.03. 2016-03-	2016 / 31.0 01 / 2016-03-31	03.2016	3								
Probe Nr. Specimen no.	Prüfgegenstand Test object	Anzahl Number	Abmessungen Dimensions [mm]	Prozess	Position	WP	PS-Nr. PS-no.								
1N	Schweißprobe "niedrige Streckenenergie"	1	t = 12 mm	138	PA	Querz	ugversud	ch gemäß [DIN EN IS	O 4136					
2H	Schweißprobe "hohe Streckenenergie"	1	t = 12 mm	138	PA	Transver DIN EI	rse tensile tes N ISO 689	et acc. to EN ISC 92-1 B	0 4136			Prüftemperati Test temperature	^{ur:} RT	Masch	nine Nr.:
						Pos.	ts	b/D ₀	S ₀	Fm	R _m	Bruchlage Pos. of fracture	Bemerkung Remark		Bewertung Evaluation

[mm]

11.9

11.9

Anforderung:

Requirement: 1N

2H

Chemical	compos	ition [%]						Ladle and	alysis		L^	Product a	analysis		
Pos.	С	Si	Mn	P	S	AI	N	Cr	Мо	Ni	Cu	V	Nb	Ti	 CEV 2)
min.30															
max.3)	0,220	0,86	1,80	0,025	0,012	0,0150	0,0160	1,60	0,74	2,10	0,55	0,140	0,070	0,070	0,65
1N/2H	0,158	0,21	0,83	0,009	< 0,001	0,091	0,0023	0,30	0,20	0,03	0,02	0,003	0,032	0,003	 0,40
1) gemä	6 QM-V	A 2.4.5 c	der GSI r	mbH, Nie	ederlassu	ng SLV	Duisburg	2) CE	V = C+(N	/n/6)+(C	r+Mo+V)/5+(Ni+(Cu)/15		

Stückanalyse

*

G

S

3) Anforderung für die Stückanalyse gem. DIN EN 10025-6

[mm]

25.2

25.3

Chemische Zusammensetzung [%]

DIN EN 10025-6

*) G = Grundwerkstoff, U = Ubergang, S = Schweißgut; **) e = erfüllt, ne = nicht erfüllt *) G = Parent metal, U = Heat affected zone, S = Weld metal; **) e = acceptable, ne = not acceptable

[mm²]

299.9

301.1

[kN]

247.7

218.9

1)

[N/mm²

826

727

Schmelzanalyse

≥ 770

Requirements of the ladle product analysis acc. to DIN EN 10025-6

**)

е

ne

Schweiß-ZTU-Diagramm

950 900 850 800	C: 0.158 Mo: 0.2	Si: 0.29 V: 0.003	Mn: 0.83 Cu: 0.02	S690QL SI P: 0.009 Al: 0.091	V-DU S: 0.0013 Ti: 0.003	Cr: 0.3 Nb: 0.032	Ni: 0.03 N2: 0.00	[%] 23 [%]	
750 700 650 () 550 1ntr 500 450			F	ferrit / I Bainit	Perlit				
월 400 350 300	Marte	nsit		Martensit-Si zeitl. Beginr	tarttemperatur n der Zwischenst	ufenumwandlur	[°C] ng [s]	TM : tzw:	443 2.5
250 200				niedrigste U zeitlicher Be	mwandlungstem ginn der Ferritur	nperatur für Fer mwandlung	rit [ºC] [s]	TF: tf:	568 4.3
150 100 50				Ac1-Tempe Ac3-Tempe	ratur ratur		[°C] [°C]	Ac1: Ac3:	731 832
0 1				10 Zeit) [8]				100

Abkühlzeit-Gefüge-Schaubild

Mechanisch-Technologische Eigenschaften

Berechnung des Wärmeeintrages und der Abkühlzeit

mit unterschiedlicher Software

- Einfache Blechgeometrie
- Analytische Ansätze

- Prozesssimulation
- Numerische Simulation des Wärmeeintrages
- Berechnung des Schmelzbades

- Berechnung der Wärmeableitung für komplexe Geometrien
- Wärmeeintrag muss als Eingangsgröße vorgegeben werden

Berechnung der Abkühlzeit mit WeldWare[®]

		Abkühlzeit			×
Berechnung	Drucken	Protoko	ll 🗸 Übernehm	en 🗙	/erwerfen
Auswahllisten Prozeß Draht 111 (E) 121 (UP) 131 (MIG) 135 (MAG) 136 (MAG, FD) 137 (MIG, FD) 141 (WIG)	Naht	Nahtart Nahtform	1100 Stumpfstoß 1104 V-Naht	<!--</td--><td>Wurzellage Fülllage</td>	Wurzellage Fülllage
751 (Laser) Wärmephysikalische Kennwerte Wärmeleitfähigkeit [W/(cm K)]: Volumenwärmekapazität [J/(cm³ K)]:	0.4 4.3	•	Kennwerte ändern		Decklage
ParameterStromstärke60 200 [A]Spannung18 25 [V]Schweißgeschwindigkeit16 40 [cm/mirVorwärmtemperatur20 450 [°C]	240 26] 36 100	Blechdicke Blechdicke Effektiver th Relativer th	1 2 nermischer Wirkungsgrad ermischer Wirkungsgrad	[mm] [mm] 0.58 0.72 0.8 0.9	12 12 0.67 0.85
Ergebnisse Abkühlzeit Streckenenergie U*I*60/vs	[s] [k]/cm] 10	9.70 0.40	Uwer-Degenkolbe (2-	dim.)	

Berechnung der Abkühlzeit mit SimWeld[®] Preprocessing

- Definition von:
 - Nahtvorbereitung
 - Geometrie und Bauteilabmessung
 - Arbeitsposition
 - Werkstoff

SimWeld[®] Ergebnisse

- Äquivalente Wärmequelle
 Wärmeeintrag für DynaWeld
- Schmelzbadgeometrie
- Tropfenablösung
- Drahttemperatur
- Energie, Wärmeeintrag, Spannung, Stromstärke
- Temperaturverlauf

Voltage			Current			Evaporation losses		
Wire voltage drop	2,4	10	Average current	85,2	N	Droplet	15.2	04
Anode V. equiv	8.0	м	RMS current	110,1	14	Droplet	1.65	24
Column	4.8	14	Generated thermal	power		Process character	istics	
Cathoda	30.4	M	Anode + Wire	919.0	141	T droplets avg.	2673,0	[10]
Voltage at arc	23.5	M	Dropiets heat	900,7	041	Pulse teq avg	0.0	H
Cuble losses	0.5	м	Calhode	975.4	010	SC tequency avg.	8.8	940
			Total heat of arc	2281,2	010			

Berechnung der Abkühlzeit T_{8,5-5} mit SimWeld[®]

vel

Prediction of weld quality Microstructure and mechanical properties

Merci vielmals!