Webinar

New Features in LS-OPT® 6.0

<u>Katharina Witowski</u> - DYNAmore GmbH Nielen Stander, Anirban Basudhar – LSTC

Stuttgart, 24.10.2019

Outline

- Overview of LS-OPT
- New features in LS-OPT 6.0
 - DIC-based parameter identification
 - Support Vector Classification
 - Interactive tables
 - Other new features

LS-OPT[®] - Optimization, Probabilistic Analysis & System Calibration

- Process manager
 - multi-stage
 - multi-case
 - multi-level

Optimization

- Material Calibration
 - Curve matching
 - Hysteresis
 - Noise
 - Full-field Calibration

- Statistics and Uncertainty
 - Robust Design
 - Sensitivity Analysis
 - LS-DYNA[®] Statistics
 - Outlier Analysis

standard deviation of y-displacement

 $\mathbf{O} \cdot \mathbf{O}$

Parameter Identification

Parameter Identification

- Parameter Identification problems are non-linear inverse problems solved using optimization
- Computed curves (from LS-DYNA[®]), dependent on parameters, are matched to experimental curves
- Optimization provides a calibration of the unknown parameters

Calibration of material parameters - Standard approach

Global data from experiment is used

Problems:

- Instability typical in calibration problems, especially complex models with many parameters
- Local phenomena such as coupon necking/barreling missed

 \rightarrow Use full-field data

Full field test result (4557 pts) from optical scan is mapped and tracked

Digital Image Correlation

Optical method for tracking changes in images

Tensile testing equipment Measurement system

gom/ARAMIS setup at DYNAmore GmbH

Import DIC data into LS-OPT

- Interfaces (LS-OPT 6.0) Multihistories and Histories
 - ARAMIS (gom)
 - GENEX
 - Extraction from ASCII files
 - DIC data may be stored in multiple files
 - → One file per time stage

	File Mult	tiHistories 🛛 🗙
Defined file multihistori	es MultiHistory Name	Preview
force_epsX	x force_epsX	2250
force_epsY	× (ARAMIS	2230
Add new	O GENEX	2000
	O File	1750
	Filename Template (wildcard)	1500
	MFz-00-04_5x8_Ausrichtung.xml Browse	ε Σ 1250
	X-Component	
	Flächenkomponente8x5.epsX	✓ # 1000
	Y-Component	∞ 750
	Kraft.DIM	500
		File Histories
C	efined file historie History Name	Preview
	MFz0004 × MFz0004	
	Add new	0.35
	⊖ GENEX	0.3
		0.25
	Filename	0.2
	MFz-00-04-FINAL.csv	Browse 0.15
	\checkmark	Show plot 0.1
		0.05
		-0 0.25 0.5

Alignment of test and simulation data

- Test and simulation geometries are typically in different coordinate systems
- Transformation of coordinates using least square formulation

$$\min_{T} \| \hat{s} X_{\mathsf{Test}} T - X_{\mathsf{FE}} \|$$

X_{Test}: Test points (subset), X_{FE} : FE model points, **T**: transform, \hat{s} : Isotropic scaling

Extraction of Multihistories from simulation

D3PLOT Interface (LS-OPT 6.0)

JULC		Iaue (Lo	-UFI0.0,)	LS-DYNA keyw	ord deck by LS-Pre	Post			- 29
	Edi	t multipoint history	,	×	Assembly 1					SelPart
me			Subcase		Part 1		vieuo	lization in L SI	סכ	Keywrd
3PlotXStrain00				\sim			visua	IIZALIOIT IIT LOF		CreEnt
Results Type Ndv Stress Result Strain Misc Infinitesimal Green-St Venant FLD Beam Source	Component L_surf_plastic_strain U_surf_plastic_strain L_surf_xx_strain L_surf_yy_strain L_surf_xy_strain L_surf_xy_strain U_surf_xx_strain U_surf_xx_strain U_surf_xy_strain	 n U_surf_xy_strain n U_surf_yz_strain U_surf_zx_strain M_surf_xy_strain M_surf_zz_strain M_surf_zz_strain M_surf_zz_strain M_surf_zz_strain M_surf_zz_strain L_surf_max_princ_str 	 L_surf_min_princ_strain L_surf_effective_strain U_surf_max_princ_strain U_surf_nin_princ_strain U_surf_effective_strain M_surf_nax_princ_strain M_surf_and_princ_strain M_surf_nin_princ_strain M_surf_min_princ_strain M_surf_effective_strain 	Ţ	7					PartD Display Refchi Renum Section
ARAMIS	O U_surf_zz_strain	O L_surf_2nd_princ_stra			-	Alignment				Group
) Coordinate File RAMIS multihistory force_epsX 2 E Interpolation			Defined transformations trans_tensile × Add new	Transformation N trans_tensile Test	lame		Simulation	alignment		Views PtColo
Nearest node 🗘				Coordinates			Node ID		0	Fas
Distance Tolerance				Test x coord	Test y coord	Test z coord	Node ID			
	ainta		7	-8.47391	.78577	2.02715	495	×	_	
lign tost and simul				17.57689	6.08299	2.38169	1435	* *		
align cesc and simula	New ali	gnment Open in LSPP		-8.19484	-6.23842	2.0367	1925	: ×		
ang				16.96481	-3.20172	2.38046	2771	×		
 All Parts 				Add).		
List of parts:						_				
				Scale factor 1.0	(default)					

Calibration: Computational challenges

Experimental and computational results can be difficult to compare

Hysteresis Material 125 -Loading/Unloading → Partial Curve Mapping **Partial Matching** Failure model: GISSMO post-failure oscillation of coupon

→ Partial Curve Mapping

Noise

Failure model: GISSMO element erosion a discrete process

Dynamic Time Warping

- Suitable for noisy curves
- Not suitable for partial mapping
- Warping path: minimum accumulated distance which is necessary to traverse all points in the curves

Postprocessing: Multihistory plot

Visualization of test and simulation curves

Support Vector Machine Classification

Metamodeling Challenges

- Binary responses
 - Blood leakage from stent

Layman, R. et al. "Simulation and probabilistic failure prediction of grafts for aortic aneurysm." *Engineering Computations* 27.1 (2010): 84-105.

Binary information: Failed (leaked) or not (no leakage)

Fluid Flow

Aorta: Lagrangian Mesh

Eulerian Fluid Mesh

Graft: Lagrangian Mesh

Support Vector Machine Classification

- Discontinuous and binary responses
 - Map input data to category

Application 1: Discontinuous Constraint Reliability

- Side Pole Impact
 - Random/Noise Variables (Normal distribution)
 - Beam thickness
 - Floor thickness
 - Reliability assessment
 - B-pillar intrusion < 585 mm</p>
 - Lower beam intrusion < 710 mm</p>
 - Door intrusion < 638.23 mm</p>

Application 1: Discontinuous Constraint Reliability

- Classifier able to approximate highly nonlinear boundaries accurately
 - Failure probability using Neural Network Metamodel (400 samples): 0.0217
 - Failure probability using SVM Classifier (400 samples): 0.0218
 - Actual Failure probability (20,000 LS-DYNA runs): 0.0219

Application 2: Multidisciplinary Analysis

- Optimization Cost Savings
 - NVH analysis followed by crash analysis
 - Because classifier is used, *crash analysis needed only at feasible NVH points*
 - Crash simulation savings: 246 out of 400 (61.5 %)

Interactive Tables

Interactive Tables

Interactive Tables

Interactive Constraint management

Constraints are only	<u>R</u> eset	
Constraint	Lower Bound Strict	Upper Bound Strict
Intrusion	Set lower bound	× 550
Mass	Set lower bound	× 0.7
Acc_max	Set lower bound	× 2.5e+06

Statistics of selected point

	Variat	oles	Composites	Constraints			
Points	tbumper	thood	Intrusion	Intrusion	Mass	Acc_max	
Nominal	0	0	0	0	0		
Mean	2.97523	2.93732	521.056	521.056	0.849357	1.99565e+0	
StdDev	1.27034	1.29872	33.3185	33.3185	0.306708	28849	
SS	1086.83	1071.02	2.83503e+07	2.83503e+07	84.7155	4.22765e+1	
Min	1	1	450.81	450.81	0.288374	1.4871e+0	
Max	5	5	583.545	583.545	1.44187	2.64094e+0	
Lower Constraint	N/A	N/A	N/A	N/A	N/A	N/	
Lower Exceeded	N/A	N/A	N/A	N/A	N/A	N/	
Prob. Exceed Lower	N/A	N/A	N/A	N/A	N/A	N/	
Upper Constraint	N/A	N/A	N/A	550	0.5	2.5e+0	
Upper Exceeded	N/A	N/A	N/A	24	88		
Prob. Exceed Upper	N/A	N/A	N/A	0.230769	0.846154	0.057692	
Num. Values	104	104	104	104	104	10	

Other new Features

Other new Feature

- Taguchi method
 - Classical robust design approach using Orthogonal Arrays
- Interface to LS-TaSC
 - Facilitates LS-TaSC to work with complex design schemes and constraints
- Export and import of stages
 - Individually
 - Full case-based process
 - E.g. Frontal Crash including its pre- and post-processing could be imported/exported as a unit with a given name

More Information on the LSTC Product Suite

- Livermore Software Technology Corp. (LSTC) www.lstc.com
- LS-DYNA
 - Support / Tutorials / Examples / FAQ www.dynasupport.com
 - More Examples www.dynaexamples.com
 - Conference Papers www.dynalook.com
 - European Master Distributor www.dynamore.de
- LS-PrePost
 - Support / Tutorials / Download www.lstc.com/lspp
- LS-OPT/LS-TaSC
 - Support / Tutorials / Examples www.lsoptsupport.com

[THUMS[®] www.dynamore.de]

Thank you for your attention!

