Webinar

Overview on LS-TaSC[™] and new Features in Version 4.1

<u>Katharina Witowski</u>, DYNAmore GmbH Willem Roux, Ansys/LST Guilian Yi, Ansys/LST Imtiaz Gandikota, Ansys/LST 17.04.2020

Outline

- Overview on LS-TaSC
 - General capabilities
- New Features in Version 4.0

LS-TaSC 4 focuses on the design of huge models for a combination of **statics**, **NVH**, **and impact**

- Multidisciplinary methodology
 - Projected subgradient method
 - Multidisciplinary optimization
 - Visualization
- New Features in Version 4.1
- Application Examples

Overview on LS-TaSC

Topology Optimization

Redistribution of material within a given domain

- Design variables
 - Relative density of each element
- Result
 - New material distribution
 - New shape of structure

LS-TaSC - General

Topology and shape optimization of non-linear problems

- Dynamic loads
- Contact conditions
- Solids and shells
- → find a concept design for structures analyzed using LS-DYNA (implicit and explicit)
- Huge LS-DYNA models
 - 10 million elements
- Multiple load cases and disciplines
- Global constraint handling
 - Energy absorption, maximum reaction forces, …
 - ightarrow Multi-point optimization and metamodels

Geometry definitions

- Symmetry
- Extrusion
- Casting
 - One sided
 - Two sided
- Forging
 - Two sided casting
 - Preserving a minimal thickness

Symmetry

Methodologies

- Topology optimization
 - Optimality Criteria for Dynamic Problems
 - Objective: Homogenization of internal energy density (IED)
 - ightarrow uniform loading of material for given mass
 - Projected Subgradient Method
 - Enables multi-disciplinary optimization: Impact, Static, <u>NVH</u>
 - ightarrow maximization of fundamental frequency for NVH load case
- Free Surface Design
 - Objective: Uniform surface stress

Integration

LS-TaSC with LS-PrePost

- results visualization
- model editing

New Features in Version 4.0 and 4.1 -Designing for the combination of impact, statics, and NVH

Projected Subgradient Method - Motivation

- LS-TaSC 3.2 method: Optimality Criteria for Dynamic Problems
- Objective uniform distribution of Internal Energy Density
 - ightarrow static and impact load cases
 - \rightarrow not suitable for NVH load cases
 - → we need a method that considers frequencies (maximization of fundamental frequency)
 - \rightarrow Projected subgradient method

Implementation of the Projected Subgradient Method in LS-TaSC™ Roux, W., Yi, G., Gandikota, I. 15th International LS-DYNA User's Conference

Projected Subgradient Method

- The projected subgradient method is related to the steepest descent method
 - This family of methods related to steepest descent is popular again in general, because of the *huge data sets*. Our implementation of the projected subgradient is unique to both to us and topology optimization, again because of *the huge data sets*.

Topology optimization requires that the mass stay constant over the iterations. The design vector is therefore mapped onto the plane of constant mass.

Multidisciplinary Optimization

The descent vector is sourced from the various discipline descent vectors

Combine normalized vectors using weighting:

$$s = \sum_{lc=1}^{m} w_{lc} \frac{s_{lc}}{\|s_{lc}\|}$$

- The weights are provided by the engineer, or computed from information provided by the engineer
 - Solution depends on weights

Solidification as Stopping Criteria

- The Projected Subgradient Method uses a new stopping criterion called Solidification, which measures the discreteness of optimized designs → fractions of elements fully used or deleted
- Assuming $N = N_{void} + N_{grey} + N_{solid}$, Solidification is defined as

 $M = \min(M_1, M_2)$

where

$$M_{1} = \frac{N_{void} + N_{solid}}{N}$$
$$M_{2} = 1 - \frac{\sum_{i=1}^{N} 4x_{i}(1 - x_{i})}{N}$$

- $\blacksquare M = 1 \rightarrow \text{fully converged design}$
- A Solidification higher than 0.95 gives good designs

New Visualization Features

NVH load cases: Eigen Modes

New Visualization Features

 MDO: Contributing Case

- 0 = none
- 1 = LC 1
- 2 = LC 2

■ 3 = LC 1+2

Examples

The benchmark problems demonstrate the new multidisciplinary solver:

- Huge models
- NVH benchmark problems
- Multi-disciplinary design optimization considering NVH and static
- Impact, static, and NVH

Performance relative to previous method

Mathematical programming techniques allow many power-ups

Projected subgradient (new):

- 30 FEA calls
- 0.1 step size

Optimality Criteria (old):

- 30 FEA calls
- 0.1 step size
- Needs about 50 iterations to match the new algorithm

Huge model performance

- Impact load case
 - 13.1 million elements
- Mass fraction: 0.25
- Projected subgradient method
 - 30 Iterations

Isosurface plot of optimal design

Huge model performance

Computational cost for huge problem

HUGE MODEL PERFORMANCE				
Model size	13.1 million elements			
Physics	Explicit impact analysis			
LS-DYNA analysis time for one iteration	600 CPU hours (5 hours using 120 CPUs on a remote cluster)			
Part design time – first iteration	25 CPU minutes (1 CPU)			
Part design time – all other iterations	2 CPU minutes (1 CPU)			
Peak memory use by LS-TaSC	15 GB			

NVH Benchmarks

- Maximization of Fundamental Frequency
- Mass fraction: 0.5
- 3 different boundary conditions

Symmetric boundary conditions → Symmetric results

NVH Benchmarks

- Multi-disciplinary optimization, 2 load cases
 - fundamental frequency
 - linear static load
- Mass fraction: 0.5
- 3 different boundary conditions

New Features in Version 4.1

- Extended Frequency capabilities
 - Constraint bounds can be placed on a frequency. This is possible only for a single eigenvalue load case full MDO will follow in a later release.
 - Mode tracking for frequency constraints.
 - Linear pentahedral and tetrahedral elements are supported for frequency design.
 - *CONSTRAINED_NODAL_RIGID_BODY keyword is supported for frequency design.

Edit Constraint				x
Frequent				
NODOUT RCFORC EXPRESSION GLOBAL	Frequency id 2 Mode Tracking (* On			
Advanced ABSTAT BNDOUT DBLOT DEFORC ELOUT GLSTAT JNTFORC MATSUM	C Off			Fenster ausschneiden
Case FREQUENCY V	Name for c	onstraint	< +inf	 Increase mass to decrease response Increase mass to increase response (Above not needed for the multipoint method or displacement constraints.)
				Cancel OK

New Features in Version 4.1

- Multi-disciplinary design optimization
 - Projected Subgradient Method
 - Multipoint scheme
 - Spatial kernel
 - \rightarrow Constrained multidisciplinary topology optimization
 - ightarrow Crash, NVH, static load cases
 - \rightarrow High performance of computing huge models with more than 10 million elements

A spatial kernel approach for topology Optimization, Roux, W., Yi, G., Gandikota, I. Computer Methods in Applied Mechanics and Engineering 361, 2020

New Features in Version 4.1

Animations of the design iterations

Application Examples

Example – Free Surface Design

Objective: uniform surface stress

 \rightarrow reduction of stress concentration

 \rightarrow 20% stress reduction

Example – Side Impact

- Simplified B-pillar
 - Objective
 - Stiffest structure

 $-10 u_{lower} < 1$,

 $\square 2u_{upper}/u_{lower} < 1$

- satisfy constraints
- and minimize mass
- Constraints

Example – Automotive Crash Box

Crashworthiness and Lightweight Optimization

- Objective: Minimize mass
- Constraints: Scaled max. Energy Absorption ≥ 1
- Geometry: solid block split into 4 parts; XY and XZ symmetry

Gandikota I, Yi G, and Roux W, Crashworthiness and lightweight optimization of an automotive crash box using LS-TaSC. FEA Information Engineering Solutions, October 2019

Impact, statics, and NVH

Multi-disciplinary optimization, 3 load cases

- Equal weights
- Mass fraction: 0.1

Impact, statics, and NVH

- Results (80 Iterations)
 - Optimal geometry

Impact, statics, and NVH

New plot type shows which load case contributes the material used in the part.

More Information on the LSTC Product Suite

- Livermore Software Technology Corp. (LSTC) www.lstc.com
- LS-DYNA
 - Support / Tutorials / Examples / FAQ www.dynasupport.com
 - More Examples www.dynaexamples.com
 - Conference Papers www.dynalook.com
 - European Master Distributor www.dynamore.de
- LS-PrePost
 - Support / Tutorials / Download www.lstc.com/lspp
- LS-OPT/LS-TaSC
 - Support / Tutorials / Examples www.lsoptsupport.com

[THUMS[®] www.dynamore.de]

Thank you for your attention!

