Muscle Modelling in LS-DYNA

O. Röhrle (Fraunhofer IPA/Uni Stuttgart), O. Avci (Fraunhofer IPA)

19 | Okan Avci, +49 711 970 3609, okan.avci@ipa.fraunhofer.de

Motivation

Performance Centre of »Mass Personalization« with personalized Products for Business to User (B2U) Models

Strategic Pooling of Competencies at Stuttgart – with due industrial integration

<u>Goal:</u>

 Development of radically new user-oriented economic value added strategies

Personalisation in the world of health sciences

The real world

3D-Image Segmentation

Medical Image Segmentation

Mask Generations for the Knee Joint

Implemented as plugin within Simpleware

Exemplar in Personalised Medicine

Design and Development of Personalised Prosthetics

- In its current state,
 - the workflow can automatically process medical images to FE mesh for analyses, and
 - the developed model can predict tissue injury.

Publication:

Ramasamy, E.; Avci, O.; Dorow, B.; Chong, SY.; Gizzi, L.; Steidle, G.; Schick, F.; Röhrle, O.: An Efficient Modelling-Simulation-Analysis Workflow to Investigate Stump-Socket Interaction Using Patient-Specific, Three-Dimensional, Continuum-Mechanical, Finite Element Residual Limb Models. Frontiers in Bioengineering and Biotechnology 6 (2018), 1–17, ISSN 2296-4185

Medical Image Segmentation

Fibre Orientation Modelling Tool

- Application of CFD to determine fibre orientations in muscles and tendons has already been investigated in several literatures
- Potential replacement of CFD solution with a Thermal analysis
- A 3D steady-state thermal analysis is relatively inexpensive compared to a CFD simulation

Thermal analysis-based fibre determination

Inouye Joshua, Handsfield Geoffrey, Blemker Silvia, Fiber Tractography for Finite-Element Modelling of Transversly Isotropic Biological Tissues of Arbitrary Shape Using Computational Fluid Dynamics, SummerSim'15, pp 1-6, 2015

Examples of Human models for witg

Medical Image Segmentation

Muscle Segmentation Tool

- Estimating Muscle Fibre Directions in Diffusion MRI through Fibre Tractography
- Fibre Clustering based on Machine-Learning algorithms to generate representative muscle volumes
- Validating Muscle Groups through transfer of Muscle fibre groups from DTI-Space to MRI-Space

Muscle Segmentation with Fibre Tractography

In Progress

Algorithm development for automatic fibre clustering and muscle volume generation

3D-Muscle Simulation

Extended Mooney-Rivlin model (Crisfield) Material Modelling

SimTech

Muscle Modelling and Simulation

Determination and Assessment of Muscle Activations

- Goals: Find the right pre-stretches of the muscle-tendon system and the right combination of muscle activations in time for the motion of the lower arm
- The Finite-Element model of the arm

- The model consist of 5 muscles and their individual fibre orientations
- Muscles are separated into muscle, muscle-tendon intermediate zone and tendon

Challenges in Modelling the Musculoskeletal System

Modelling the musculoskeletal system in three dimensions

How to find the reference configuration?

Modelling the muscle-tendon pre-stretch (PS)

- All muscles have initial pre-stretches and pre-strain, which are not known
- The pre-stretch state for the initial arm position is important to generate the arm motion by the muscle forces triggered by activation

Nested optimization of the pre-stretches

- Conditions of the <u>outer optimization</u>:
 - 1. Setting the pre-stretches of muscles and tendons and rotate back by applying a momentum force at the elbow joint, which is determined by an inner optimisation
- Conditions of the <u>inner optimization</u>:
 - 1. Setting the pre-stretches of muscles and tendons
 - \rightarrow given by the outer optimization
 - 2. The resulting rotation is back rotated by momentum force at elbow joint

Surrogate modelling for finding optimal pre-stretches

META-models: regression surfaces of the dominant variable in respect to the others

Muscle Modelling and Simulation

Determination and Assessment of Muscle Activations

- Simulation of defined set of activation patterns for analysis with the multi-grid optimization method
 - Load conditions: 1. Phase: setting pre-stretch; 2. Phase: back rotation; 3. Phase: gravitation force; 4. Phase: muscle activations
 - Sensitivity analysis with 1052 design points for muscle activation
 - \rightarrow optimizing the motion on a meta model in real time

uscle forces over time

Future Applications:

Optimization of Function and Comfort of Orthopedic Textile Bandage during Dynamic Loading

Motivation

Skeletal muscle modelling across the scales: multiscale modelling

Multiscale modelling based microstructural features, e.g. collagen stiffness/alignment/volume fraction, ...

Microstructural properties ↔ Macroscopic material behaviour

18

Constitutive Modelling of the Micro-Constituents

Muscle matrix: Collagen fibre families and orientation distribution function

Assumptions for the description of the muscle-matrix constituent

passive behaviour of the matrix is mainly influenced by helically arranged collagen fibres around the muscle fibre

SimTec

a single collagen fibre may be described in spherical coordinates by

Dispersion is modelled by an orientation distribution function (ODF) $\mathfrak{p}(\mathfrak{a}_0) = \mathfrak{p}(\mathfrak{b}_0) = \mathfrak{p}(\theta, \phi) = \mathfrak{p}_{\theta}(\theta)\mathfrak{p}_{\phi}(\phi)$

INDIVIDUALISATION

Towards a person-specific constitutive law based on homogenisation techniques

PerSiVal: Pervasive Simulation and Visualization

A SimTech project just recently started (in collaboration with JP Sedelmair und Prof. Rothermel)

Goals:

- Real-time visualization of complex but realistic biomechanical models in AR/VR
- Pervasive Computing (cloud, edge, HPC)
- Surrogate modelling workflow:
 - Data interpolation using sparse grids
 - Distributed machine learning
- Quantifiable data, e.g. muscle deformations
- Model information and annotations
- Applications: Rehabilitation, Ergonomics

Human-Socket-Interaction

Numerical Example II: Human-Socket-Interaction

BMBF – Joint Venture Project

Patch2Patient

Automated individual-based Manufacturing of patient-specific CFRP-Components by Fiber Patch Placement

Motivation: Transfemoral amputation – improving comfort of prostheses

Non-traumatic amputation

Clinical procedure: Myodesis

[1]

[1] Source: http://www.physio-pedia.com/File:Foot_amputation_levels_(2).png

[2] Source: https://de.pinterest.com/pin/77827899782052326/

Source: http://www.schildkroet-fitness.com/home.html

Limb Simulation

Example 1 Results – Donning prosthetic socket

Von Mises [MPa]

Selected Applications: Above Knee Amputee Modelling

Example: socket donning

 Investigating internal pressures to assess muscle-stump interaction for above-knee amputees.

Ramasamy, Avci, Dorow, Chong, Gizzi, Steidle, Schick, Röhrle. An efficient modelling-simulation-analysis workflow to investigate stump-socket interaction using patient-specific, three-dimensional, continuum-mechanical, finite element residual limb models, Front. Bioeng. Biotechnol., 2018.

26

Mass Personalization B2U

First International Musculoskeletal System Symposium

Organised by Institute for Modelling and Simulation of Biomechanical Systems at the University of

Our Competencies

- **Finite Element Simulation**
- Material modeling and testing
- Simulation of the muscle apparatus
- Computer Vision & Medical Image Segmentation
- Workflow- and Video-Overlay-Technique
- Virtual development of implants and prostheses
- Virtual ISO-testing procedures
- Stress analysis and structural optimization
- **Dental biomechanics**
- Simulation of biting power

"The Virtual Orthopedic Lab develops simulation concepts for development and optimization of products in orthopedics, prosthetics and dentistry."

Thank you!

Prof. Oliver Röhrle, PhD

e-mail roehrle@simtech.uni-stuttgart.de phone +49 (0) 711 685- 66384 fax +49 (0) 711 685- 66384

Institute for Modelling and Simulation of Biomechanical Systems Chair for Continuum Biomechanics and Mechanobiology University of Stuttgart

Abteilung fuer Biomechatronische Systeme Fraunhofer IPA Nobelstr. 12, 70569 Stuttgart

