#### **DYNAmore Express**

# Topology Optimization with LS-TaSC and Parametric Optimization with LS-OPT

Katharina Liebold, DYNAmore GmbH

21.01.2022



Slide 1 of 37

## Outline

- Classification of Structural Optimization Techniques
- LS-TaSC
  - Overview
  - New features in Version 2022R1
- LS-OPT
  - Overview
  - New features in Version 2022R1



## **Classification of Structural Optimization Techniques**

- Topology optimization
  - shape, size, and location of gaps in the defined domain is derived by the optimizer
- Topometry optimization
  - shell thickness is designed per element basis
- Shape optimization
  - a free shape of the outer surface contour is chosen
- Shape optimization
  - parameterized geometry (e.g. a hole radius) is designed
- Size optimization
  - shell thickness is designed per part basis
- Material optimization

LS-TaSC

- LS-OPT
- → Parametric optimization



**Classification of Structural Optimization Techniques** 







# LS-TaSC Overview



## **Topology Optimization**

Redistribution of material within a given domain



- Design variables
  - Relative density of each element
- Result
  - New material distribution
  - New shape of structure





## LS-TaSC - General

Topology and shape optimization of non-linear problems

- Dynamic loads
- Contact conditions
- Solids and shells
- → find a concept design for structures analyzed using LS-DYNA (implicit and explicit)
- Huge LS-DYNA models
  - 10 million elements
- Multiple load cases and disciplines
- Global constraint handling
  - Energy absorption, maximum reaction forces, …
  - ightarrow Multi-point optimization and metamodels







## **Geometry definitions**

- Symmetry
- Extrusion
- Casting
  - One sided
  - Two sided
- Forging
  - Two sided casting
  - Preserving a minimal thickness
- Pattern and cyclic repetition (2022R1)

Symmetry

Forging: Two-sided casting preserving a minimum thickness (no holes)

Extrusion





## Methodologies

- Topology optimization
  - Optimality Criteria for Dynamic Problems
    - Objective: Homogenization of internal energy density (IED)
  - ightarrow uniform loading of material for given mass
  - Projected Subgradient Method
    - Enables multi-disciplinary optimization: Impact, Static, <u>NVH</u>
  - ightarrow maximization of fundamental frequency for NVH load case
- Free Surface Design
  - Objective: Uniform surface stress





## Integration



#### LS-TaSC with LS-PrePost

- results visualization
- model editing







#### **Application Examples**



## **Example – Free Surface Design**

Objective: uniform surface stress

 $\rightarrow$  reduction of stress concentration



#### $\rightarrow$ 20% stress reduction





### **Example – Bottle Opener**

- Starting design and load cases
- Material: plastic
- Desired mass fraction 0.4
- Geometry Constraint
  - Extrusion





## **Example – Bottle Opener**

Results

From Initial Design to Optimized Structure (density distribution)





## **Example – Side Impact**

- Simplified B-pillar
  - Objective
    - Stiffest structure

 $-10 u_{lower} < 1$ ,

 $\square 2u_{upper}/u_{lower} < 1$ 

- satisfy constraints
- and minimize mass
- Constraints









## **Example – Automotive Crash Box**

## Crashworthiness and Lightweight Optimization

- Objective: Minimize mass
- Constraints: Scaled max. Energy Absorption ≥ 1
- Geometry: solid block split into 4 parts; XY and XZ symmetry







Gandikota I, Yi G, and Roux W, Crashworthiness and lightweight optimization of an automotive crash box using LS-TaSC. FEA Information Engineering Solutions, October 2019





Slide 18 of 37

## Impact, statics, and NVH

Multi-disciplinary optimization, 3 load cases

- Equal weights
- Mass fraction: 0.1





#### Impact, statics, and NVH

- Results (80 Iterations)
  - Optimal geometry







## Impact, statics, and NVH

Results

shows which load case contributes the material used in the part





#### New Features in 2022R1

- The d3plot interface was updated
- Surface designs can be exported to STL
  - Already available for isosurfaces of topology design of solid elements
- \*ELEMENT\_SOLID\_ORTHO is supported
- Pattern and cyclic repetitions geometry definitions were added





# LS-OPT Overview



Slide 23 of 37

## About LS-OPT

LS-OPT is a stand alone optimization software

- → can be linked to any (simulation) code –
- Interface to LS-DYNA, Excel, Matlab
- Interface to LS-PrePost, PRIMER, ANSA, Hypermorph, ...
   > shape optimization
- Interface to META Post

   *result extraction*
- Interface to LS-OPT, LS-TaSC

   nested optimization
- User-defined interface
- Interface to Queuing Systems
  - PBS, LSF, SLURM, AQS, User-defined, ...
  - → LS-OPT as process manager





## **About LS-OPT**

#### LS-DYNA integration

- Importation of design parameters from LS-DYNA keyword files (\*PARAMETER)
- Support of include files (\*INCLUDE)
- Result extraction of most LS-DYNA response types
- Checking of LS-DYNA keyword files (\*DATABASE\_)
- Monitoring of LS-DYNA progress





## Methodologies

- (Sequential) Response Surface Method ((S)RSM)
  → Metamodels
  - Polynomials
  - Radial Basis Functions (RBF)
  - Feedforward Neural Networks (FFNN)
- Genetic Algorithm (MOGA->NSGA-II)
  - → Multi-objective Optimization
  - Direct and metamodel-based
- Monte Carlo Analysis
  - → Robustness Analysis
  - Direct and metamodel-based





310

300

290

280

270

260

250

## **Methodologies**

Classifiers (Support Vector Classification)



Approximation of response

- Discontinuous responses
- Binary responses
- Constraints for optimization or reliability analysis



#### Classifier

Approximation of constraint boundary

- Design point (variable values)
- Feasibility of each design





## Optimization

- Size-/Shape optimization
- Mixed continuous/discrete variables
  - Specify sets of discrete variables (e.g. sheet thicknesses)
- Parameter/System Identification
- Multiple load cases
  - Multi-disciplinary Optimization (MDO)
- Multi-objective optimization (Pareto Frontier)
- Multi-level optimization
- Reliability based design optimization
- Robust parameter design





#### Optimization

 Parameter/System Identification Module: Calibration of test and simulation curves or scalar values



|                                                                                                               | $\frac{1}{P}\sum_{p=1}^{P}W_i\left(\frac{F_i(\boldsymbol{x})-G_i}{s_i}\right)^2$ |
|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| History matching composite                                                                                    |                                                                                  |
| Name:                                                                                                         |                                                                                  |
| MSE1                                                                                                          |                                                                                  |
| Algorithm:<br>Mean Square Error (difference in curve Y values)<br>Curve Mapping (size of area between curves) |                                                                                  |
|                                                                                                               | → add new file history                                                           |
| Computed curve:                                                                                               |                                                                                  |
| F1_vs_d1                                                                                                      | ~                                                                                |
| Regression points<br>From target curve<br>Fixed number (equidistant, interpolated)                            |                                                                                  |
| You can convert this composite to an expression for further fine-tuning.                                      | <u>K</u>                                                                         |



## Optimization

- Full-field calibration
  - parameter identification using DIC data
  - Matching in time and space



- Sensitivity Analysis
  - Design Exploration
  - DOE Studies for Variable Screening (ANOVA, Sobol)
    - Contribution of variables to system performance
    - Identification of significant and insignificant variables
    - Ranking of importance
  - Principal Component Analysis (PCA)









Stochastic/Probabilistic Analysis: Consideration of uncertainties

- Test of Model Robustness
  - Statistics (mean, standard deviation)
  - Correlation Analysis
- Reliability (Probability of Failure)
- Outlier Detection
- Fringe statistical results on FE model









Optimization incorporating uncertainties

Robust Parameter Design (RDO)

Improve/Maximize the robustness of the optimum

Reliability Based Design Optimization (RBDO)

Improve failure probability of optimum





## New Features in 2022R1

## LS-OPT Pro

- Version naming will change to YYYY R1 or R2
- The first version of LS-OPT Pro is 2022 R1
  - Released Jan, 2022
- LS-OPT Pro part of 3-Tiered licensing system
  - LS-OPT Pro (Licensed)
  - optiSLang Premium
  - optiSLang Enterprise
- Metamodel of Optimal Prognosis (MOP)
  - integrated from optiSLang
  - best metamodel is selected automatically
    - Linear, Quadratic, Kriging





#### New Features in 2022R1

- The d3plot interface was updated
- LS-DYNA<sup>®</sup> d3plot results extraction: extraction at coordinates
  - Interpolation at exact location for shell and solid elements
    - Shells: Triangles, Quadrilaterals
    - Solids: Tetrahedrons, Pentahedrons, Hexahedrons
  - $\rightarrow$  e.g. full-field calibration using DIC data
- CORAplus interface
  - pdb Partnership for Dummy Technology and Biomechanics
  - Calculates level of correlation of time-history signals

| data                                                   |                   |      |                               |                   | Iotal Result                    |       |              |   |         |  |
|--------------------------------------------------------|-------------------|------|-------------------------------|-------------------|---------------------------------|-------|--------------|---|---------|--|
| - I                                                    |                   |      |                               | - 1               | • Loadcase                      |       |              |   |         |  |
| eneral                                                 |                   |      |                               |                   | Test 1_1 💌                      |       |              |   |         |  |
| ackage Name                                            | ame CORA          |      |                               | O Loadcase Rating |                                 |       |              |   |         |  |
|                                                        |                   |      |                               |                   | <ul> <li>Subloadcase</li> </ul> |       |              |   |         |  |
| ommand                                                 | cora.sh           | a.sh |                               |                   |                                 |       |              |   |         |  |
|                                                        | 🗌 Do not i        | add  | input file argument           |                   |                                 |       |              |   |         |  |
| ORA Config. File annex.cps                             |                   |      |                               | Corridor Signal   |                                 |       |              |   |         |  |
| conies controlfile cns (0 includes) to CORA/it run/Cor |                   |      | -                             |                   |                                 |       |              |   |         |  |
| and substitutes parameters                             |                   |      | <ul> <li>Magnitude</li> </ul> | · _               |                                 |       |              |   |         |  |
|                                                        | Fytra input files |      |                               | O Slope           |                                 |       |              |   |         |  |
|                                                        |                   | iput | liles                         | I                 |                                 |       |              |   |         |  |
| put definitions                                        | 3                 |      |                               |                   |                                 |       |              |   |         |  |
| Loadcase                                               |                   |      | Subloadcase                   | Datafil           | e                               | Signa | l            |   | History |  |
| Test 1_1                                               | [                 | •    | Cae 1 🖉                       | /data             | /annex_1_1/annex_{              | S1HE  | AD0000H3ACX0 | - | cael    |  |
| Test 1_1                                               | [                 | •    | Cae 2                         | /data             | /annex_1_1/annex_a              | SIHE  | AD0000H3ACX0 | - | cae2    |  |
|                                                        |                   |      |                               |                   |                                 |       |              | _ |         |  |

Name

CORA\_cae1\_magnitude

CORA Recults



Edit response

Subcase

Multiplier

□ Not metamodel-linked □ Dump formula file

(~)

Offset

## More Information on our Product Suite

#### • LS-DYNA

- Support / Tutorials / Examples / FAQ www.dynasupport.com
- More Examples www.dynaexamples.com
- Conference Papers
   www.dynalook.com
- European Master Distributor www.dynamore.de
- LS-PrePost
  - Support / Tutorials / Download www.lstc.com/lspp
- LS-OPT
  - Support / Tutorials / Examples www.lsoptsupport.com
- LS-TaSC
  - Support / Tutorials / Examples www.lsoptsupport.com



[THUMS<sup>®</sup> www.dynamore.de]



# Your questions, please



Slide 37 of 37