# Recent Development – Part I



#### Presented by Jason Wang







**15. Deutsches LS-DYNA Forum 15.-17. Oktober 2018, Bamberg** 

#### Introduction

Multi-Physics, Multi-formulation, Multi-scale, Multi-stage

- Electromagnetics
- ICFD
- PARTICLE Methods

#### Scalable code

- MPP
- Parallel efficiency
- HYBRID

#### LSTC | Products

# Multi-Physics Solver, Pre-and-Post Processor, Optimization, and Library of Validated Dummies and Barriers





### LS-DYNA | Applications

#### **Development costs are spread across many industries**



Aerospace Bird strike Containment Crash



#### Manufacturing

Stamping Forging Welding



#### **Consumer Products**



#### Electronics Drop analysis

Structural

Earthquake safety

Homeland security

Concrete and composite structures

Package analysis Thermal

#### Defense



Weapons design Blast and penetration **Underwater Shock Analysis** 

#### **Biosciences**

#### LS-DYNA | Current Capabilities

#### Includes coupled Multi-Physics, Multi-Scale, and Multi-Stage in one Scalable Code



- Explicit/Implicit

 $\checkmark$ 

- Heat Transfer
- ALE & Mesh Free EFG, SPH, Airbag Particle



User Interface Elements, Materials, Loads



Acoustics, Frequency Response, Modal Methods



Incompressible Fluids

**Discrete Element Methods** 



**CESE** Compressible Fluids



Electromagnetics



**Control Systems** 

#### LS-DYNA | One Code, One Model



# Single Model for Multiple Disciplines – Manufacturing, Durability, NVH, Crash, and FSI

Multi-Physics and Multi-Stage Structure + Fluid + EM + Heat Transfer Implicit + Explicit ....

Multi-Scale Failure predictions, i.e., spot welds

**Multi-Formulations** 

Linear + Non-Linear + Peridynamics + ...



#### LS-DYNA | Strong Coupled Multi-Physics Solver

Computers capable of multi-physics simulations are becoming affordable. Scalability is rapidly improving for solving multi-physics problem.



# Multi-Physics, Multi-formulation, Multi-scale, Multi-stage

Pierre L'Eplattenier

Facundo Del Pin Iñaki Çaldichoury Rodrigo R. Paz Chien-Jung Huang Edouard Yreux Jason Wang



#### Battery – Distributed Randles circuit model

#### Electro-chemistry in the electrodes simulated by equivalent electrical circuits (Randles circuits)





- Current collectors transport electrons to/from tabs; modeled by resistive elements
- Jelly roll (anode separator cathode) transports Li+ ions; modeled with Randle circuit



- $r_0$ : Ohmic & kinetic
- $r_{10}\,\&\,c_{10}$ : Diffusion
- u: Equilibrium voltage (OCV)
- $r_m$ : Current collectors

#### Battery abuse simulations

- Pouch cells, cylindrical cells available, soon prismatic cells
- Battery abuse simulations on cells, modules, packs
- Coupled with mechanical and thermal solvers
- Solid, shells and composite thick shells
- External and internal shorts
- Battery packaging application in LS-PrePost



External short 5 cells module Internal short 10 cells module

#### Steady State for Conjugate Heat and FSI

The steady state solver or the potential flow solver allow for a fast linearization of Fluid Structure Interaction (FSI) and/or Conjugate Heat transfer (CH) problems



These simulation provide valuable insight faster useful for prototyping.

#### Steady State + Fluid Structure Interaction



- CFD analysis of full vehicle.
- Couple parts of the structure to analysis the response in a realistic environment.

Three different option to solve the same problem:

- Solve Full Navier Stokes with FSI non linear coupling.
- Solve Potential flow with a non-linear step at the end.
- Solve the structural analysis alone using the outputfrom Navier-Stokes and the \*LOAD\_SEGMENT automatically generated input deck. Use \*ICFD\_DATABASE\_DRAG write the files.



#### Steady State + Fluid Structure Interaction



# Using \*LOAD\_SEGMENT from Navier-Stokes solution



#### Multi-physics – Cardiac simulations (EM + ICFD + Structure)



#### SPH | Fluid Simulation

- Density smoothing:  $\tilde{\rho}_I = \frac{\sum_J \rho_J \phi_{IJ}}{\sum_J \phi_{IJ}}$  with  $\phi_{IJ} = W_{IJ} m_J / \rho_J$
- Murnaghan Equation of State for weakly compressible modeling

$$p = k_0 \left[ \left( \frac{\rho}{\rho_0} \right)^{\gamma} - 1 \right]$$

• Low artificial viscosity

lacksquare



#### SPH | MLS-Based formulation

- Quasi-Linear Moving Least-Squares formulation for accuracy and consistency
- Stabilized nodal integration for better stability

More CPU-Intensive than regular SPH **Effective Plastic Strain Effective Plastic Strain** Time = 5 000e-01 5 000e-01 4.500e-01 4.500e-01 4.000e-01 4.000e-01 3.500e-01 3.500e-01 3.000e-01 3.000e-01 2.500e-01 2.500e-01 2.000e-01 2.000e-01 1.500e-01 1.500e-01 1.000e-01 1.000e-01 5.000e-02 5.000e-02 0.000e+00 0.000e+00 Time = Time = L **Traditional SPH MLS-Based SPH** 

Higher accuracy – Better consistency – Alleviated tensile instability

#### SPH | Implicit formulation

- Implicit, incompressible SPH formulation allows larger timestep size
- Tailored for wading-type problems
- Example with 9.1 million particles:



Implicit SPH Color-coded by velocity

**Blender rendering** 

### CPM | New CPM for AIRBAG Simulations

- Main cost for airbag simulation, (1)airbag self contact, (2)p2f and (3)p2p
- New and faster particle to fabric (p2f) contact algorithm
- Redistribute CPM particles among processors to achieve better scaling and efficient particle to particle (p2p) collisions

Elapsed time (seconds)

- 3x speedup for tank test
- Pressure history are consistent between releases





#### CPM | CAB Performance Improvement



- OpenMP (HYBRID) enabled
- Reduced amount of data transferring between processors for better scaling
- It is more efficient for the full vehicle simulation which uses more than 200 processors
- Same input faster turn around time

# Scalable Code MPP and Hybrid Enhancements

Jason Wang Tobias Erhart Gunther Blankenhorn Lee Bindeman Edward Helwig







## Model size for Safety Analysis



# CPU technology - Moore's Law



# MPP performance – topcrunch.org (2007)



### MPP Scaling



- Contact occurs in a small region
- Initial decomposition cannot keep contacts in local during simulation
- Element cost increases in the contact region

#### Special decomposition



- Performance was measured with 96 processors
- CPM is about 3x faster from R7 to R10
- Self contact about the same
- The overall speed up is about ~20% for bag, ~5% for full car

#### \*CONTROL\_MPP\_DECOMPOSITION\_ARRANGE\_PARTS



Courtesy of: Richard Taylor, Arup

#### **Re-decomposition**

- Deformation/translation creates extra communication and causes load unbalancing.
- decomp { defgeo } : The model is decomposed using the current geometry.
- Re-decomposition rearranges partition and reduces network traffic.





#### **Re-decomposition**



- More development work to make an automated process similar to adaptive simulation.
- Currently it uses fulldeck restart capability, user has full control to get better performance.
- Testing other problems, i.e. bird strike, small offset, ODB, etc.

### SMP and MPP >> HYBRID

#### 12core/2socket 4 nodes clusters



Number of messages reduce by 36x

### Message latency between 4 nodes



# Explicit MPP/Hybrid Scaling and Consistency



# Implicit MPP/Hybrid Performance

#### **Performance on Linux AMD64 systems**

| No. of cores<br>(node x socket x core)            | WCT of Factor Matrix<br>(seconds)                                                                                                                          | WCT for job to<br>complete<br>(seconds)                                                                                                                                            |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16 x 4 x 1                                        | 2055                                                                                                                                                       | 14417                                                                                                                                                                              |
| RID is an obvious choice                          | 985                                                                                                                                                        | 13290                                                                                                                                                                              |
|                                                   | 582                                                                                                                                                        | 29135                                                                                                                                                                              |
| erformance                                        | 960                                                                                                                                                        | 9887                                                                                                                                                                               |
| educe network traffic<br>educe memory requirement |                                                                                                                                                            |                                                                                                                                                                                    |
|                                                   | No. of cores<br>(node x socket x core)<br>16 x 4 x 1<br><b>RID is an obvious choice</b><br>erformance<br>educe network traffic<br>educe memory requirement | No. of cores<br>(node x socket x core)WCT of Factor Matrix<br>(seconds)16 x 4 x 12055RID is an obvious choice985erformance<br>educe network traffic<br>educe memory requirement960 |

Reduce I/O requirement

# Scalability - To Infinity and beyond

#### Hardware

- More cores
- Higher clock rate
- Wider instructions
- Higher memory bandwidth
- Faster interconnect
- Quantum computer

### Software

- Efficient algorithm
- MPP/HYBRID
- Special decomposition
- Re-decomposition
- In-network computing
- Dynamic load balancing
- Al

# Recent Development – Part II



**Presented by Yun Huang and Tobias Erhart** 

Thank you!







**15. Deutsches LS-DYNA Forum 15.-17. Oktober 2018, Bamberg**