CHARACTERISATION AND MODELING OF THE CRASH BEHAVIOR OF DIFFERENT MATERIALS AND JOINTS WITH ASPECTS OF DIGITALIZATION

Silke Sommer

AGENDA

- Introduction of Fraunhofer IWM
- Characterization and Modeling the crash behavior of
 - of different materials and components
 - of different joints

Fraunhofer-Gesellschaft Fraunhofer Groups: Pooling expertise

Institutes working in related subject areas cooperate in Fraunhofer Groups and foster a joint presence on the R&D market. They help to define the Fraunhofer-Gesellschaft's business policy and act to implement the organizational and funding principles of the Fraunhofer model.

- Innovation Research
- Information and Communication Technology
- Life Sciences
- Light & Surfaces

- Microelectronics
- Production
- Defense and Security
- Materials and Components MATERIALS

Fraunhofer Institute for Mechanics of Materials IWM

Directors

Prof. Dr. Peter Gumbsch Dr. Rainer Kübler (Deputy Director), Prof. Dr. Chris Eberl (Deputy Director)

300 Employees – 20.3 Mio. Euro Budget – 46.4 % from Industry (K2018)

Mechanics of Materials

- How do materials behave in components?
- How do material properties evolve during manufacture?
- How can material properties be accurately adjusted?

Combining experiment and simulation

Damage concept: multi step evaluation of crashworthiness

Investigated Aluminum profiles from different alloys Material properties in three orientations

D.-Z. Sun, F. Andrieux, C. Fehrenbach, LightMAT Bremen, 8.-10.11. 2017

Different specimen tests for EN AW-6060-T79 Two chamber profile, 3.5mm wall thickness

D.-Z. Sun, M. Krawiec, T. Reichert, H. Hooputra, ALUMINIUM TWO THOUSAND, 10th Int. Congress & ICEB Verona, June 2017

© Fraunhofer IWM

IWM

Anisotropic effects in smooth and notched tension tests of EN AW-6060-T79 Wall thickness 3.5 mm

D.-Z. Sun, M. Krawiec, T. Reichert, H. Hooputra, ALUMINIUM TWO THOUSAND, 10th Int. Congress & ICEB Verona, June 2017

Modeling Anisotropic plasticity

Barlat 3-parameter model (Yld89) with anisotropic hardening

- Barlat 1991 (Yld91) for solid elements
- Barlat 2000 (Yld2000) for shell elements

x = extrusion direction (longitudinal=0°)
y = transverse = 90°

Barlat 3-parameter 3 material parameters

$$\Phi = |S_1 - S_2|^m + |S_2 - S_3|^m + |S_3 - S_1|^m = 2\overline{\sigma}^m$$

 $\Phi = a|K_1 + K_2|^m + a|K_1 - K_2|^m + c|2K_2|^m = 2\sigma_0^m$

6 material parameters

Barlat Yld2000

Barlat Yld91

$$\Phi = \varphi' + \varphi'' == 2\overline{\sigma}^a$$

8 material parameters

$$\phi = \phi + \phi = -20$$

$$\varphi' = |X'_1 - X'_2|^a \quad \varphi'' = |2X''_1 + X''_2|^a + |X''_1 + 2X''_2|^a$$

 $K_i,$ resp. $\,S_i\,,\,X'_1\,and\,X''_i\,are$ components of a transformed stress tensor

D.-Z. Sun, F. Andrieux, Modeling of anisotropic behavior of aluminum profile for damage prediction, ICAA16, Montreal, June 2018 ¹¹
[©] Fraunhofer IWM

Modeling of tensile and shear tests of EN AW 6082 T6 Barlat 3p with isotropic failure model GISSMO - shells

Measured and calculated stress vs. strain curves of tensile and shear tests in 0°, 45° and 90° directions

good prediction not only of the yielding but also of the hardening at larger strain level

© Fraunhofer IWM

in combination with the isotropic failure model the orientation dependent failure is predicted in a good manner

bad prediction of the yielding in shear tests

D.-Z. Sun, F. Andrieux, Modeling of anisotropic behavior of aluminum profile for damage prediction, ICAA16, Montreal, June 2018

D.-Z. Sun, F. Andrieux, Modeling of anisotropic behavior of aluminum profile for damage prediction, ICAA16, Montreal, June 2018 © Fraunhofer IWM

IWM

💹 Fraunhofer

good prediction of the yielding in shear tests with a good accuracy., but with increasing deformation the discrepancy increases

0.05

0.06

0.07

formulation (shell)

YLD2000 - shell elements

experiment

Simulation

45°

0.02

0.03

0.01

300

250

200 [Wba] 150 م

100

50

0

- discrepancy obtained also due to the element

0.04

E [-] 3

good prediction not only of the yielding but also of the hardening at larger strain level

0.04

45°

0.02

0.03

0.01

in combination with the isotropic failure model the orientation dependent failure is predicted in an acceptable manner

0.05

DAMAGE

0.07

0.06

Modeling of shear tests of EN AW 6082 T6 YLD2000 and YLD91

Measured and calculated stress vs. strain curves of shear tests in 0°, 45° and 90° directions. Simulations with YLD2000 and with Barlat 1991 in combination with GISSMO

300

250

200

150

100

50

0

0

Integrated modeling of aluminum die casting alloys

- Inhomogeneous microstructure and porosity result in a large scatter of local properties in a casting component
- There are not reliable methods to predict damage behavior of cast components considering pore morphology and its stochastic character
- Coupling of casting simulation with crash simulation is a necessary step to solve the problem
- The approach used in this work:
 - characterization of influence of porosity and triaxiality
 - development of material models
 - modeling of influence of pore morphology on damage at different loadings

Constitutive equations about porosity effects Deformation and damage

D.-Z. Sun, F. Andrieux, Automotive CAE Grand Challenge 2018, April 17–18, 2018 Hanau

Modeling of different pore morphologies (f=5%) under shear loading

Stress [MPa]

- Three pore morphologies (840 elements in specimen center)
 - M1: 30*80%+30*20%+600*2%+180*0%
 - M2: 50*80%+100*2%+690*0%
 - M3: 200*20%+100*2%+540*0%
 - Ref: Homogeneous pore distribution 840*5%

→ Scatter in simulation is similar to that in experiment

D.-Z. Sun, F. Andrieux, Automotive CAE Grand Challenge 2018, April 17–18, 2018 Hanau

Characterization and modeling of the fiber / matrix / interface behavior of FRP Micromechanical in-situ testing methods

150 mm

- Iocal characterization of material properties
- specimen preparation from small components
- direct observation of damage mechanisms

¹⁷ Jörg Hohe, S. Fliegener, T. Kennerknecht, et al. ,Composite Materials Group © Fraunhofer IWM

Characterization and modeling of the fiber / matrix / interface behavior of FRP Identification of the constitutive properties (fiber/matrix/interface) using inverse simulation

Strain rate dependent damage mechanisms

Hot-Spot-Detection

- Definition of a temperature window above reference temperature
- Reference temperature = ΔT_{int} (t)
- The temperature fields (t) are filtered for values within the defined window

Space and time summation

Determined values within the temperature window

are written with an **1** in an separate matrix

Normalization on the number of time steps

Indication of the damage zone $D(x_i, \dot{\epsilon})$

Lienhard J. Dissertation, submitted to Karlsruher Institut für Technologie (KIT), Aug.2018 19

Multi step evaluation of crashworthiness of Joints

Characterization of joints

- TASKS
- Determination of material/joint data
- Simulation of specimen tests

Validation of material and FEmodels

- Simulations of different loading situations
- Variation of sheet thickness, strainrate, material combinations
- Simulation of specimen tests with simplified models

Component behavior

 Simulation of component tests with simplified models

Failure criteria for simplified models

Calibration of simplified models

Validation with component tests

AIM

Experimental determination of material behavior Deformation and failure behavior of the weld zone microstructures

S. Burget, Modellierung des Verformungs- und Versagensverhaltens punktgeschweißter Mischverbindungen zwischen mikrolegierten ²¹und pressgehärteten Stählen, Dissertation, Karlsruher Institut für Technologie (KIT), 2016 © Fraunhofer IWM

Modeling of spot-welded joints

S. Burget, Modellierung des Verformungs- und Versagensverhaltens punktgeschweißter Mischverbindungen zwischen mikrolegierten ²² und pressgehärteten Stählen, Dissertation, Karlsruher Institut für Technologie (KIT), 2016 ^{© Fraunhofer IVM}

Modeling of spot-welded joints Numerical prediction of load bearing capacities using micromechanical damage models for the different weld zones

Calculated failure curves for different weld nugget diameters

S. Burget, Modellierung des Verformungs- und Versagensverhaltens punktgeschweißter Mischverbindungen zwischen mikrolegierten und pressgehärteten Stählen, Dissertation, Karlsruher Institut für Technologie (KIT), 2016 © Fraunhofer IVM

🗾 Fraunhofer

Characterization and modeling of weld zone specific material properties of GMAW weld seams

HAZ of Al 6000 series extrusion profil (MIG weld seam)

Layered butt weld of Al 7000 series alloy (MIG welded) Tested smooth tensile specimens: as welded and grinded

e [-]

Specimens "as welded" fractured in softened HAZ

Specimens "grinded" fractured in weld metal

Modeling of self-piercing riveted joints *CONSTRAINED_INTERPOLATION_SPOTWELD (Model 2) in LS-Dyna *CONSTRAINED_SPR3 (Model 2)

M. Bier, S. Sommer: AIF IGF-Nr. 352ZBG / FOSTA P837 »Crash Mechanisches Fügen«

Automation of parameter identification and prediction of model parameters *CONSTRAINED_INTERPOLATION _SPOTWELD (Model 2) in LS-Dyna *CONSTRAINED_SPR3 (Model 2)

- Implementation of the calculation procedure in the software JoiningLab (GFal)
- Model parameters are automatically determined from experimental test results
- Prediction of properties and model parameters for untested connections, i.e. for unknown properties of a joint
- Output of a material card file for LS-Dyna

RR

R RN

R RS

S. Sommer, P. Rochel, M. Guenther, D. Herfert, G. Meschut; P. Giese, Crash simulation of mechanical joints with automatically determined model parameters based on test results and prediction algorithms, 15th International LS-DYNA® Users Conference, Dearborn, 2018

IWM

JoiningLab

experiment or prediction

Digitalization with Fraunhofer IWM: Integrated concept for reliability, lifetime, functionality of materials and components

Ch. Eberl, Workshop Material Digital, Fraunhofer IWM, 11.-12.04.2018

CONTACT

Freiburg

Dr.-Ing. Silke Sommer

Group Leader Joining and Joints

Business Unit Component Safety and Lightweight Construction

Fraunhofer Institute for Mechanics of Materials IWM

Woehlerstr. 11 | 79108 Freiburg | Germany

Phone +49 761 5142-266 | Fax +49 761 5142-510

silke.sommer@iwm.fraunhofer.de | www.iwm.fraunhofer.de

