

Ein Unternehmen der Salzgitter Gruppe

Analysis of stress states during experimental determination of cut-edge formability

Bamberg, 15th October 2018

Matthias Schneider, Matti Teschner, Sebastian Westhäuser

Agenda

Introduction

Formability of cut-edges

- Experimental determination
- Effects on hole expansion ratio

Numerical simulation

- FE-model structure
- Fitting and validation of hardening behavior

Stress analysis

- Procedure for determining
- Visualization and comparison of the occurring stress conditions

Summary, conclusion and outlook

Agenda

SALZGITTER MANNESMANN FORSCHUNG

Ein Unternehmen der Salzgitter Gruppe

Introduction

Formability of cut-edges

- Experimental determination
- Effects on hole expansion ratio

Numerical simulation

- FE-model structure
- Fitting and validation of hardening behavior

Stress analysis

- Procedure for determining
- Visualization and comparison of the occurring stress conditions

Summary, conclusion and outlook

Slide

Introduction - Experimental determination of formability

Ein Unternehmen der Salzgitter Gruppe

State of the art: Forming Limit Curve (FLC)

FLC not sufficient for components with shear cut-edges

- Additional tests to determine cut-edge formability
- Numerous experimental approaches published
- Results differ

Slide

[Sch15]

Agenda

Introduction

Formability of cut-edges

- Experimental determination
- Effects on hole expansion ratio

Numerical simulation

- FE-model structure
- Fitting and validation of hardening behavior

Stress analysis

- Procedure for for determining
- Visualization and comparison of the occurring stress conditions

Summary, conclusion and outlook

Slide

Stress states during determination of cut-edge formability Hole expanding test (HET) with conical punch acc. to ISO 16630

Stress states during determination of cut-edge formability Hole expanding test (HET) with hemispherical punch acc. to Schneider

Westhäuse

15.10.2018 SZMF, M. Schneider, M. Teschner

Hole tensile test acc. to Watanabe and Tachibana

Effects on cut-edge formability

Possible reasons: Different radial and axial strain gradient or superimposed compression?

Target: analysis of stress states during experiment

Slide

Agenda

Introduction

Formability of cut-edges

- Experimental determination
- Effects on hole expansion ratio

Numerical simulation

- FE-model structure
- Fitting and validation of hardening behavior
- Stress analysis
 - Procedure for for determining
 - Visualization and comparison of the occurring stress conditions

Summary, conclusion and outlook

FE-model structure and material model

Requirements: Anisotropy in yield loci and hardening for shells and solids

*MAT TABULATED JOHNSON COOK ORTHO PLASTICITY Model:

[Hai16] 🚆

Input for optimization

Input: Flow curve from tensile test

- Fit: Parameter for Hockett-Sherby approximation
 - Positive gradient
 - Steady transition

Variable: $k_f(1)$ for 0°, 45° and 90°-curve

Target: Stress-strain curve with necking information

Inverse parametrization

Optimization framework

Termination criteria: convergence at minimization of sum of error squares

Validation on tensile test data

Material: hot rolled, bainitic steel, 4.0 mm

Comparison of experimental and numerical global and local strain data

Result: individual tensile tests show good correlation

[Wes17] Slide

Validation on hole expansion data

Polar diagram

- Major true strain on circle section cut close to edge
- Line color represents punch travel ٠
- Synchronization between experimental and numerical test based on HER

Agenda

Introduction

Formability of cut-edges

- Experimental determination
- Effects on hole expansion ratio

Numerical simulation

- FE-model structure
- Fitting and validation of hardening behavior

Stress analysis

- Procedure for for determining
- Visualization and comparison of the occurring stress conditions

Summary, conclusion and outlook

Procedure for stress analysis

Interventions for result quality

- Low punch velocity
- Mean value of element results using model symmetry
- Low band filtering

Differentiation for stress analysis

- Position relative to the rolling direction (0°, 45° an 90°)
- Position relative to the thickness (free surface, middle and punch side)

Which stress states are significant ?

Stress analysis - Hole tensile test

- Stress-triaxiality: ≈ ¼ ≙ uniaxial tension
- Could be modeled with shells

Ein Unternehmen der Salzgitter Gruppe

Material: hot rolled, bainitic steel, 4.0 mm

- Middle
- Free
- --- uniaxial compression or biaxial tension
- --- plane strain
- --- uniaxial tension or biaxial compression

Stress analysis – HET with hemispherical punch

Three-dimensional necking regions

- Concavities on the upper surface
- No gap to punch on lower surface
- Contact pressure is lowered
- Stress states at 0°, 45° and 90° do not differ significantly

Lode-angle-parameter

- Starts at -1
- Moves at very low hole expansion rates to 1
- Curve characteristic fits to visual impression

ZGIT

MANNESMANN

FORSCHUNG

Stress analysis - Hole expanding test with conical punch

- Compression at beginning causes high plastic strains
- Higher contact pressure tends to reduce necking
- Contact angle shifts moment of separation to much higher hole expansion ratios
- Curve slope shows much variation

SAI ZGIT

MANNESMANN

FORSCHUNG

Very high HER due to eroded edges

Scaling to HER for shear-cut edges

Stress analysis - Hole expanding test with conical punch

- Compression at beginning causes high plastic strains
- Higher contact pressure tends to reduce necking
- Contact angle shifts moment of separation to much higher hole expansion ratios
- Curve slope shows much variation

SAI ZGITTER

MANNESMANN

Comparison of test results complex

3D-visualization of all data

Stress analysis - Visualization

Ein Unternehmen der Salzgitter Gruppe

MMC fitted on data from

- Hole tensile test* •
- HET with hemispherical • punch*
- Shear test* ٠
- Tensile test •
- **Biaxial test** ٠

HET with conical punch*

- Nonconstant stress state
- Gradient across thickness •
- Highest strains ٠
- Adequate failure prediction .

* eroded edges

Agenda

Introduction

Formability of cut-edges

- Experimental determination
- Effects on hole expansion ratio

Numerical simulation

- FE-model structure
- Fitting and validation of hardening behavior

Stress analysis

- Procedure for for determining
- Visualization and comparison of the occurring stress conditions

Summary, conclusion and outlook

Summary

SALZGITTER MANNESMANN FORSCHUNG

Hardening behavior

- *MAT_TABULATED_JOHNSON_COOK_ORTHO_PLASTICITY used with 3 hardening curves.
- Extrapolations fitted pragmatically by inverse parametrization.
- Good accordance of experimental and numerical strain data achieved.

Stress analysis

- Analysis of stress-triaxiality delivered the expected uniaxial tension.
- Analysis of Lode-angle-parameter enabled differentiation of investigates tests.

Outcome

- Massive effect of the punch contact pressure found for hole expansion with conical punch in accordance to the ISO 16630.
- Hole expansion with conical punch should not be used for determination of fracture strain due to unconstant stress state.

Conclusion and outlook

Conclusion

- Lode-angle-parameter identifies effect of contact pressure.
- Hole expansion with conical punch shows highest impact.
- This can be a reason for diverse test results when determining cut-edge formability.

Outlook

- Research on thickness and hardening influence on stress state
- Investigating damage accumulation during described tests
- Using damage caused by shear cutting as an initial edge condition

Literature

- [Bei16] Beier T. and Wöstmann S.: "Berücksichtigung von schergeschnittenen Blechkanten zur Auslegung von Formgebungsprozessen höherfester Stahlwerkstoffe in der FEM-Umformsimulation mit LS-DYNA", LS-DYNA Anwenderforum, 2016
- [Gul13] Gula G., Beier T. and Keßler L.: "Charakterisierung des Umformverhaltens von beschnittenen Kanten bei mehrphasigen Blechwerkstoffen für die Berücksichtigung in der Methodenplanung", EFB-Kolloquium Blechverarbeitung, 2013
- [Hai15] Haight S., Kan C.-D. and Du Bois P.: "Development of a Fully- Tabulated, Anisotropic and Asymmetric Material Model for LS-Dyna (*MAT_264)", European LS-Dyna Conference, 2015
- [Hai16] Haigh S. H.: "An anisotropic and asymmetric Material Model for Simulation of Metals under dynamic Loading", Ph.D. Thesis, 2016
- [ISO08] International Organization for Standardization: "Determination of forming limit curves in laboratory", Metallic materials Sheet and strip, 2008,
- [ISO17] International Organization for Standardization: "Hole expanding test", Metallic materials Sheet and strip, 2017
- [Kar09] Karelova A., Krempaszky C., Dünckelmeyer M., Werner E., Hebesberger T. and Pichler A.: "Formability of advanced high strength steels determined by instrumented hole expansion testing", Materials Science and Technology Conference and Exhibition, 2009
- [Sch15] Schneider M., Geffert A., Peshekhodov I., Bouguecha A. and Behrens B.-A.: "Overview and comparison of various test methods to determine formability of a sheet metal cut-edge and approaches to the test results application in forming analysis", Materialwissenschaft und Werkstofftechnik, 2015
- [Sch16] Schneider M., Peshekhodov I., Bouguecha A. and Behrens B.-A.: "A new approach for user-independent determination of formability of a steel sheet sheared edge", Prod. Eng. Res. Devel., 2016
- [Wat06] Watanabe K. and Tachibana M.: "Simple prediction method for the edge fracture of steel sheet during vehicle collision (1st report)", LS-DYNA Anwenderforum, 2006
- [Wes17] Westhäuser S., Schneider M. and Denks I. A.: "On the Relation of Local Formability and Edge Crack Sensitivity", International Conference on Steels in Cars and Trucks, 2017