15. Deutsches LS-DYNA Forum

Recent Updates to the Structural Conjugate Heat Transfer Solver

Thomas Klöppel

DYNAmore GmbH

Bamberg, October 16th 2018

Slide 1 of 33

Block 1: New developments for thermal boundary conditions

- Motivation
- Brief summary of *BOUNDARY_THERMAL_WELD_TRAJECTORY
- New *BOUNDARY_FLUX_TRAJECTORY
- New *BOUNDARY_TEMPERATURE_RSW
- Summary 1

Motivation: Manufacturing Processes

- Line welding processes
 - motion of volumetric heat sources
 - different equivalent sources for different applications
 - welding curved geometries with solids and/or shells

Laser cutting

- motion of surface heat sources on curved geometries
- element erosion due to temperature criterion
- after element erosion propagation to new segments
- Resistance spot welding
 - complex coupled problem (structure, thermal, EM)
 - for large number of welds in a model a simplified solution technique is requested

EM Resistive Spot Welding (RSW

Block 1: New developments for thermal boundary conditions

Motivation

Brief summary of *BOUNDARY_THERMAL_WELD_TRAJECTORY

New *BOUNDARY_FLUX_TRAJECTORY

New *BOUNDARY_TEMPERATURE_RSW

Summary of block 1

*BOUNDARY_THERMAL_WELD_TRAJECTORY

	1	2	3	4	5	6	7	8
Card 1	PID	PTYP	NSID1	VEL1	SID2	VEL2	NCYC	RELVEL
Card 2	IFORM	LCID	Q	LCROT	LCMOV	LCLAT	DISC	ENFO
Card 3	P1	P2	P3	P4	P5	P6	P7	P8
Opt.	Tx	Ту	Tz					

- Heat source follows a node path with a constant or varying prescribed velocity
- No need to include mechanical solver for motion
- Different possibilities to define aiming direction, for example based on segment normals
- Implemented for solid and thermal thick shells

*BOUNDARY_THERMAL_WELD_TRAJECTORY

	1	2	3	4	5	6	7	8
Card 1	PID	PTYP	NSID1	VEL1	SID2	VEL2	NCYC	RELVEL
Card 2	IFORM	LCID	Q	LCROT	LCMOV	LCLAT	DISC	ENFO
Card 3	P1	P2	P3	P4	P5	P6	P7	P8
Opt.	Tx	Ту	Tz					

List of pre-defined equivalent heat sources (IFORM).

Block 1: New developments for thermal boundary conditions

- Motivation
- Brief summary of *BOUNDARY_THERMAL_WELD_TRAJECTORY
- New *BOUNDARY_FLUX_TRAJECTORY
- New *BOUNDARY_TEMPERATURE_RSW
- Summary of block 1

	1	2	3	4	5	6	7	8
Card 1	SSID	PSID	NSID1	VEL1	SID2	VEL2	RELVEL	
Card 2	PROP		LCROT	LCLAT				
Card 3	GEO	LCQ	Q	LCINC	ENFO			
Card 4	P1	P2	P3	P4	P5	P6	P7	P8
Opt.	Tx	Ту	Tz					

aims and scope

- surface flux boundary condition that follows a prescribed path
- tilting of heat source has to be accounted for
- propagation to newly exposed segments after element erosion is the crucial feature for laser cutting applications

modified surface version of *BOUNDARY_THERMAL_WELD_TRAJECTORY

	1	2	3	4	5	6	7	8
Card 1	SSID	PSID	NSID1	VEL1	SID2	VEL2	RELVEL	
Card 2	PROP		LCROT	LCLAT				
Card 3	GEO	LCQ	Q	LCINC	ENFO			
Card 4	P1	P2	P3	P4	P5	P6	P7	P8
Opt.	Tx	Ту	Tz					

source defined on a segment set (SSID)

- trajectory defined by nodal path (NSID1)
- motion with prescribed velocity (VEL1), possibly defined as function of time
- base orientation of heat source via second trajectory (SID2, VEL2) or constant (Tx,Ty,Tz)
- can be applied in thermal-only simulations

	1	2	3	4	5	6	7	8
Card 1	SSID	PSID	NSID1	VEL1	SID2	VEL2	RELVEL	
Card 2	PROP		LCROT	LCLAT				
Card 3	GEO	LCQ	Q	LCINC	ENFO			
Card 4	P1	P2	P3	P4	P5	P6	P7	P8
Opt.	Tx	Ту	Tz					

- Iocal coordinate system based on
 - the base orientation
 - a rotation as function of time
 - a lateral motion as function of time
- constant surface heat density is currently assumed in a double elliptic region
- Gaussian distribution and user-defined function to follow

	1	2	3	4	5	6	7	8
Card 1	SSID	PSID	NSID1	VEL1	SID2	VEL2	RELVEL	
Card 2	PROP		LCROT	LCLAT				
Card 3	GEO	LCQ	Q	LCINC	ENFO			
Card 4	P1	P2	P3	P4	P5	P6	P7	P8
Opt.	Tx	Ту	Tz					

- tilting (angle between beam aiming direction t and the surface normal) changes the projection on the surface
- the changes in projected area is counterbalanced by a reduced heat density for ENFO=1
- further tuning with parameter LCINC that defines a heat density scale factor as function of tilt angle

	1	2	3	4	5	6	7	8
Card 1	SSID	PSID	NSID1	VEL1	SID2	VEL2	RELVEL	
Card 2	PROP		LCROT	LCLAT				
Card 3	GEO	LCQ	Q	LCINC	ENFO			
Card 4	P1	P2	P3	P4	P5	P6	P7	P8
Opt.	Tx	Ту	Tz					

- propagation of boundary condition for eroded elements can be activated with PROP=1
- a part set (PSID) specifies candidates
 - elements in the set are monitored
 - if an element fails the newly exposed segments are communicated to the boundary condition

I element failure due to a temperature criterion can be defined with *MAT_ADD_EROSION

	1	2	3	4	5	6	7	8
Card 1	SSID	PSID	NSID1	VEL1	SID2	VEL2	RELVEL	
Card 2	PROP		LCROT	LCLAT				
Card 3	GEO	LCQ	Q	LCINC	ENFO			
Card 4	P1	P2	P3	P4	P5	P6	P7	P8
Opt.	Tx	Ту	Tz					

Thermal Solver - Recent Update

Slide 13 of 33

	1	2	3	4	5	6	7	8
Card 1	SSID	PSID	NSID1	VEL1	SID2	VEL2	RELVEL	
Card 2	PROP		LCROT	LCLAT				
Card 3	GEO	LCQ	Q	LCINC	ENFO			
Card 4	P1	P2	P3	P4	P5	P6	P7	P8
Opt.	Tx	Ту	Tz					

Thermal Solver - Recent Update

Slide 14 of 33

Block 1: New developments for thermal boundary conditions

- Motivation
- Brief summary of *BOUNDARY_THERMAL_WELD_TRAJECTORY
- New *BOUNDARY_FLUX_TRAJECTORY
- New *BOUNDARY_TEMPERATURE_RSW
- Summary of block 1

*BOUNDARY_TEMPERATURE_RSW

	1	2	3	4	5	6	7	8
Card 1	NSID		NID1	NID2	DEATH	BIRTH	LOC	
Card 2	DIST	Hl	Н2	R	TEMCTR	TEMBND	LCID	

Modelling approaches for resistance spot welding (RSW)

- use a detailed and coupled (EM, thermal, structure) simulation
- use an equivalent heat source and calibrate power to obtain realistic weld nuggets
- for large assemblies and hundreds of spot welds neither approach is feasible
- aims and scope of the new keyword
 - simplified approach with reduced calibration requirements
 - direct temperature definition (Dirichlet condition) for the weld nugget
 - condition only active during the welding, standard degree of freedom otherwise

*BOUNDARY_TEMPERATURE_RSW

	1	2	3	4	5	6	7	8
Card 1	NSID		NID1	NID2	DEATH	BIRTH	LOC	
Card 2	DIST	H1	Н2	R	TEMCTR	TEMBND	LCID	

condition defined on a node set (NSID)

- for thermal thick shells surface (LOC) can be chosen
- position between two nodes (NID1, NID2) at a given distance from base node (NID1)
- weld nugget consist of two half ellipsoid
 axis of symmetry of nugget is line between nodes

Slide 17 of 33

*BOUNDARY_TEMPERATURE_RSW

	1	2	3	4	5	6	7	8
Card 1	NSID		NID1	NID2	DEATH	BIRTH	LOC	
Card 2	DIST	H1	Н2	R	TEMCTR	TEMBND	LCID	

I temperature in the weld nugget

- prescribed at the center
- prescribed at the boundary
- quadratic approximation

boundary condition active between BIRTH and DEATH times

- Ioad curve input (LCID)
 - temperature as function of time
 - abscissa normalized to active time period

Block 1: New developments for thermal boundary conditions

- Motivation
- Brief summary of *BOUNDARY_THERMAL_WELD_TRAJECTORY
- New *BOUNDARY_FLUX_TRAJECTORY
- New *BOUNDARY_TEMPERATURE_RSW
- Summary of block 1

Summary 1

*BOUNDARY_THERMAL_WELD_TRAJECTORY

- Realistic heat source description for all fusion welding processes
- Easy and flexible input also for curved and deforming structures
- Readily applicable as tool in the virtual process chain even with mixed discretizations

*BOUNDARY_FLUX_TRAJECTORY

- Easy and flexible input for flux boundary also for curved and deforming structures
- Tilting of heat source is accounted for
- Applicable to laser cutting simulations due to propagation after element erosion

I *BOUNDARY_TEMPERATURE_RSW

- Simplified simulation method for spot welds in assembly simulations
- Applicable to shells and solids
- Reduced calibration effort

Block 2: Thermal Composite TSHELL

Motivation

- Element formulation and mesh reconstruction
- Contact functionalities
- Summary and Outlook

Motivation 2: Battery Abuse Simulation

- Ithium-ion batteries have gained importance in various applications
- prediction of response to abusive conditions is of particular importance
 - customers request LS-DYNA to support the development phase by predictive simulations
 - this kind of simulation poses a strongly coupled multi-physics problem:
 - structure mechanics
 - electromagnetics
 - heat transfer

Motivation 2: Battery Abuse Simulation

- Contradicting requirements on modelling strategy
 - structure mechanics: coarse resolution of layers to obtain a feasible time step size
 - EM and thermal solver: fine resolution of layers to capture all physical effects

optimal mechanical resolution

optimal resolution for EM and thermal [source: L'Eplattenier et al., Salzburg, 2017]

Possible Solution: composite Tshell elements:

- good and relatively fast mechanical resolution
- reconstruction of the finely resolved model for EM (already implemented) and thermal

Block 2: Thermal Composite TSHELL

Motivation

- Element formulation and mesh reconstruction
- Contact functionalities
- Summary and Outlook

Thermal Composite Thick Shell Elements

- starting point is lay-up in a user-defined mesh
 - virtual elements and nodes are created automatically
 - temperature degrees of freedom associated with new nodes
 - internal lists links virtual nodes to "standard" nodes

- a potentially largely increased number of degrees of freedom is to be solved for in the thermal solver
- the thick shell element of the thermal solver itself does not need any specific element technology as the structural counterpart
- information of each (virtual) layer can easily be shared between EM and thermal solver

Thermal Composite Thick Shell Elements - Validation

- study of temperature field evolving in a battery cell due to Joule heating
 comparison of different modeling strategies:
 - one layer of thick shell elements
 - layers resolved with layers of solid elements

Thermal Composite Thick Shell Elements - Validation

- study of temperature field evolving in a battery cell due to Joule heating
 comparison of different modeling strategies:
 - one layer of thick shell elements
 - layers resolved with layers of solid elements

Contact Functionality of Thermal Composite Thick Shell Elements

reconstructed mesh can also be used for heat transfer through contact

Example contact of a composite structure with to homogenous blocks

- strategy 1: one layer of thick shell elements for composite structure
- strategy 2: 4 different layers resolved with layers of solid elements

Contact Functionality of Thermal Composite Thick Shell Elements

reconstructed mesh can also be used for heat transfer through contact

Example contact of a composite structure with to homogenous blocks

- strategy 1: one layer of thick shell elements for composite structure
- strategy 2: 4 different layers resolved with layers of solid elements

Contact Functionality of Thermal Composite Thick Shell Elements

reconstructed mesh can also be used for heat transfer through contact

Example contact of a composite structure with to homogenous blocks

- strategy 1: one layer of thick shell elements for composite structure
- strategy 2: 4 different layers resolved with layers of solid elements

Block 2: Thermal Composite TSHELL

Motivation

Element formulation and mesh reconstruction

Contact functionalities

Summary and Outlook

Summary 2

- thick shell functionality has been implemented into thermal solver of LS-DYNA
 - finely resolved mesh is reconstructed automatically
 - virtual elements and nodes are generated internally
 - new degrees of freedom are added to the system
 - information is shared with EM and structure solver
 - results in agreement with solution from finely resolved solid meshes
 - heat transfer across contact surfaces
 - work in progress
 - provide temperature information at virtual nodes for post-processing

Your questions, please

