

DynaWeld GmbH & Co. KG Süd: Herdweg 13, D-75045 Wössingen Nord: Hermann-Löns-Straße 3A, D-21382 Brietlingen Kamen: Herbert-Wehner-Straße 2, D-59174 Kamen E-Post: info@dynaweld.de Web: www.dynaweld.eu

Optimization of Tooling Design for Hot Mandrel Bending of Pipe Elbows

J. Prehm (DynaWeld GmbH & Co. KG) U. Diekmann (Matplus GmbH) W. Homberg, D. Tabakajew (LUF, University of Paderborn) H. Uysal, N. Schönhoff (Lindemann GmbH & Co.KG)

> 15. Deutsches LS-DYNA Forum 15. - 17. October 2018 in Bamberg

Introduction

- What is a Pipe Elbow ?
- How it is made ?

Objectives

- Resource efficiency and productivity
- New tools for SME

Performed work and selected results

- FEM Modelling
- Materials Modelling
- Meta-Modelling

Summary and Outlook

Elbows produced by Lindemann GmbH&Co KG

Elbows from seamless or ERW pipes

Outside diameter: Wall thickness: Radius:

17.2 -610.0 mm 1.8 - 32.0 mm 2D / 3D / 5D

Challenge

- Broad range of dimensions
- Broad range of tools (mandrels)

- 1. (Seamless) Tubes/Pipes are cut to sections
- 2. Pipe sections are placed on a tool/mandrel
- 3. Simultaneous inductive heating (~ 800 °C) and forming
- 4. Forming consists of simultaneous widening and bending
- 5. Result are elbows showing homogeneous wall thickness (inside and outside)

Challenges:

Quality, Resource efficiency, Productivity

Objectives

1. Optimization of the process

- Reduction of material losses
 - starting from 8 25%
- Reduction of energy consumption
- Decrease of production time
- Increase in productivity

2. Creation of software tools for SME:

- Easy to use tools for optimization of processes and tool design
- Transfer of technology to other SME concerning hot forming

Example MatPlus HQ – shop floor App

Material Geometry Material Calculation Results Restart Help License Quit	FEM- Calculation	the second secon	bounding box Volume elements x [mn] 2500 8699 y [mn] 1150 reset 2 [mm] 520 close
A B C D E F G H J K MatPlusHQ Report Date: 13.07.2018 Dimension: X [m]: 2,8 Material: AW221 Y [m]: 1,15 Component: CAD File: HQ Z [m]: 0,5 CaD File: HQ Meterial: AW221 Date: 7/13/2018 CAD File: HQ Meterial: AW221 Date: 7/13/2018		temperature of the second seco	re 100e+02 0 0 0 000e+02

Initial Simulation Results

Code_Aster seemed to be powerful

..but was finally not suitable for our complex system

- Contact conditions
- Damage modeling for hot forming
- Robustness and performance

Determination of boundary conditions

Materials properties Friction coefficients Temperature fields

Generation of automated calculations

Pre-Processing including parametric modelling of geometries Batch processing of many calculations (> 2.500) using a multi-processor cluster with LS DYNA Automated post processing of the required features

Meta-Modelling

Evaluate calculations using different methods like neural networks, random forest Optimization runs using meta-models

Calculation of materials properties using JMatPro

Generation of consistent material cards for forming simulations

- Thermo-Physical Properties
- Flow curves

Hot Tensile Testing EN ISO 6892-2

Simplified Johnson Cock model

 $\sigma = (A + B \exp(n\epsilon))$

no influence of strain rate and temperature

area of reduction

Tab. 2 Results of tensile tests, 1.4	4541
--------------------------------------	------

Specimen	Temp.	D ₀	a 0	b ₀	au	bu	L ₀	LU	R _{p0,2}	R _m	Ag	A ₅	Z	Strain rate
Specifien	°C	mm	mm	mm	mm	mm	mm	mm	MPa	MPa	%	%	%	1/s
T_700C_0,1_1	700	89,60	3,15	12,50	0,69	9,08	10,00	15,82	130,2	298,7	29,5	58,2	84,1	0,1
T_700C_0,1_2	700	89,60	3,15	12,50	0,64	8,94	10,00	16,36	140,9	296,4	29,6	63,6	85,5	0,1
T_700C_0,1_3	700	89,60	3,15	12,50	0,74	9,05	10,00	16,29	157,0	298,6	30,5	62,9	83,1	0,1
average	700								142,7	297,9	29,9	61,6	84,2	0,1

Tab. 3 Results of tensile tests, P235

Specimen	Temp.	D ₀	a ₀	b ₀	Du	b _U	L ₀	LU	R _{p0,2}	R _m	Ag	A ₅	Z	Strain rate
Specimen	°C	mm	mm	mm	mm	mm	mm	mm	MPa	MPa	%	%	%	1/s
T_700C_0,1_1	700	82,50	3,81	12,50	0,17	5,40	10,00	21,61	73,7	117,7	21,5	116,1	98,1	0,1
T_700C_0,1_2	700	82,50	3,81	12,50	0,15	5,38	10,00	21,88	80,3	120,8	17,7	118,8	98,3	0,1
T_700C_0,1_3	700	82,50	3,81	12,50	0,14	5,53	10,00	21,11	75,6	118,0	19,6	111,1	98,4	0,1
average	700								76,5	118,8	19,6	115,3	98,3	0,1

$$\epsilon_{fail} = \ln \frac{100}{100 - Z}$$

P235: *εfail*=4.07

1.4541: *ϵfail*=1.83

Parameters/Variation of Tool Geometry

Resulting Geometry

Tool for automatic generation of Input-Files

🖶 Basisgeometrie 😁	_ 🗆 X
Rohrlänge [mm]:	370
Rohrdurchmesser [mm]:	82.5
Wanddicke [mm]:	3.6
Aussendurchmesser [mm]:	114.3
Mittenradius [mm]:	152
Start	

Fixed parameters for a certain dimension

App for Parametric Design of Mandrel Geometry

parameters for optimization can be processed in batch mode

>2500 Calculations using LS-DYNA

- 8 from ~1000 dimensions of elbows
- Variation of parameters (material, radius, diameter, wall thickness, length, height, angle, expansion)

Computation time using an 8 Core, CPU: Intel Xeon E5-2670

- 456 days, 14 hours, 20 minutes
- was reduced by using a bigger university cluster

Influence of Expansion Ratio on Angle in Tolerance

114,3 x 3,6 (Norm 3) from 82,5 x 3,6

Influence of Expansion Ratio on Plastic strain

114,3 x 3,6 (Norm 3) from 82,5 x 3,6

Meta-Modelling for Multi-Variate Optimization

Random Forest Workspace:

Here: model for variation of wall thickness

Input parameters:

- Tool lengths
- Tool height
- Expansion angle

Combination of all models to optimize the target

values:

Results of a meta-model:

Knime Model										
Best Value	Tool angle_const [°]	Tool height [mm]	Tool_length [mm]	Objective value						
1	60	205.6	224.55	0.24160192						
2	60	205.6	230.05	0.241961948						
3	60	206.15	224.55	0.242608664						
4	60	206.15	230.05	0.242728537						
5	57.75	205.6	224.55	0.247997124						
6	57.75	205.6	230.05	0.249123411						
7	57.75	206.15	224.55	0.249582874						
8	57.75	206.15	230.05	0.250483848						
9	55.5	205.6	230.05	0.258777058						
10	55.5	205.6	224.55	0.258832455						

Good agreement with FEM calculation

Verification

Production of elbows with optimized tool

- Higher production yield: + 14%
- Higher production speed: + x

Verification

Damage by unstable process

Verification

New tooling design leads to:

- Increased materials efficiency: Losses can be reduced significantly
- Increased productivity: Production speed can be increased significantly
- Increased energy efficiency by higher speed of production and less material
- Findings were validated in practical tests at Lindemann -but not yet in industrial production

New software and tools help to reduce complexity:

- easy to use
- to automatically perform many calculations
- Meta-modelling can be used for optimisation, saves time and reduces number of FEcomputations

Software will be further developed to help other SME improving their production processes

