15th German LS-DYNA[®] Forum

Simulation strategies for additive manufacturing with LS-DYNA

C. Liebold

10/2018 - Bamberg, GER

Agenda

Motivation

Methods available in LS-DYNA

Modeling approaches

Future Plans & Summary

Motivation

There exist a large variety of methods: Selective laser sintering (SLS) Selective laser melting (SLM) Fused Deposition Modeling (FDM) Stereolithography (SL) Laminated Object Modeling (LOM) Powder Bed and Inkjet head 3D printing

... and many more...

Motivation

All these processes have something in common:

They are very often temperature dependent methods

They allow for individual and highly complex part generation

The production process might have an influence on the resulting components

behavior

LS-TaSC: topology optimization

Methods used are adopted from welding simulation:

Usage of *BOUNDARY_THERMAL_WELD_TRAJECTORY

	1	2	3	4	5	6	7	8
Card 1	PID	PTYP	NSID1	VEL1	SID2	VEL2	NCYC	RELVEL
Card 2	IFORM	LCID	Q	LCROT	LCMOV	LCLAT	DISC	
Card 3	Pl	P2	₽3	P4	P5	P6	P7	P8
Opt.	Tx	Ty	Tz					

*SET_NODE which defines the laser path

Velocity of the weld source

NCYC = Number of sub-cycling steps

IFORM = Geometry of energy-rate density distribution

LCID & Q = weld energy input rate vs. time and multiplier

Methods used are adopted from welding simulation:

Usage of *MAT_THERMAL_CWM (*MAT_T07)

	1	2	3	4	5	6	7	8
Card 1	TMID	TRO	TGRLC	TGRMULT	HDEAD	TDEAD		
Card 2	LCHC	LCTC	TLSTART	TLEND	TISTART	TIEND	HGHOST	TGHOST

TISTART/-END = Material has a birth and death time

Allows to turn on layers

Until birth HDEAD/TDEAD

TLSTART/-END = Material is activated based on temperature

Allows to evaluate, if melting process has been successfull

Until activated HGHOST/TGHOST

All parameters are temperature dependent

Methods used are adopted from welding simulation:

Usage of *MAT_CWM (*MAT_270)

	1	2	3	4	5	6	7	8
Card 1	MID	RO	LCEM	LCPR	LCSY	LCHR	LCAT	BETA
Card 2	TASTART	TAEND	TLSTART	TLEND	EGHOST	PGHOST	AGHOST	
Opt.	T2PHASE	T1PHASE						

TASTART/-END = temperature range for annealing process

TLSTART/-END = temperature range for material activation

Until activation:

Low stiffness

Negligible thermal expansion

Card 1 contains activated properties

Different modeling approaches are conceivable:

"smeared approach"

Only one part

Coincident nodes

"semi-detailed approach"

One part for each layer

Contacts have to be defined between the layers

Thermal contact can be activated depending on time

"Detailed approach"

layer- or even element wise activation (remeshing)

Volume consistency?

All approaches allow for path consideration:

Element-wise activation - small thermal timestep size ncyc = 1

Patch-wise activation - medium thermal timestep size ncyc = 🗡

Layer-wise activation - large thermal timestep size ncyc =

Simulation can be done in two steps:

- 1) Run thermal analysis only
- 2) Run mechanical analysis using *LOAD_THERMAL_D3PLOT

Direct coupling between thermal and mechanical analysis is possible

Thermal analysis is implicit, mechanical can be implicit or explicit

Thermal only analysis (20 Layers)

 $dt_max = 1.0$

Printing time for each layer: ~ 0.04 s, cooling time/layer = 10 s, final cooling = 100 s

Element-wise activation	Patch-wise activation	Layer-wise activation
min. dt = 2.E-04 cpu time = 21min, 16 s ncyc = 1	min. dt = 2.E-03 cpu time = 16min, 15 s ncyc = 11	min. dt = 2.E-02 cpu time = 7min, 26 s ncyc = 101

How do we get the path into the model?

Ultimaker Cura software allows for gcode-path generation based on stepdata

envyo[®] allows for data interpretation, point cloud and *SET_NODE – generation

*BOUNDARY_THERMAL_WELD_-TRAJECTORY cards, min/max timestep curves, part and contact activation times

(model uses ~1.7million points, 1730 layers, more than 95.000 trajectories)

Future Plans & Summary

Simulation of additive manufacturing processes is doable with LS-DYNA envyo[®] helps to simplify the preprocessing when it comes to path-considerations

Further investigation should be done regarding the influence of the introduced methods on the warpage of the part

Mapping the simulation result and paths onto structural meshes

Future Plans & Summary

springback

LSTC is working on that topic Recent enhancements include adaptive remeshing based on the temperture gradient Further information:

www.lstc-cmmg.org/3d-printing

v. Mises stress

res. Displ.

