FE-SIMULATION OF IMPACT LOADS ON THE HUMAN BODY: METHODOLOGY FOR THE DEVELOPMENT OF TISSUE MODELS

Zechang Wang, Roland Behrens, Prof. Dr. Norbert Elkmann Fraunhofer IFF – Robot System

Motivation safe human robot collabration with help of FE-methody

safe collabration

- risk of human injury
- limit of pain

human-centered collaboration

- 40 subjects
- 21 localization
- force-based limits ideal for simulating human-robot collisions
- biomechanics response
- experimental data

Concept Methodology // develop of a stress tissue model

© Fraunhofer IFF, Magdeburg 2018

Tissue Model stress models for the local impact body parts

Tissue Model Tissue models// lower arm muscle

CONTACT

- impactor head and skin(AUTOMATIC_SURFACE_TO_SURFACE)
- skin and fat (TIED_SURFACE_TO_SURFACE)
- fat and muscle (IED_SURFACE_TO_SURFACE)
- muscle and bone(AUTOMATIC_SURFACE_TO_SURFACE)

Tissue Model Tissue models// design concept

Tissue Model Tissue models// lower arm muscle

Tissue Model Tissue models// lower arm muscle

frictionless without the heat loss E_{k_impact} E_{i_tissue}

Tissue Model Video// IFF study and simulation in LS-DYNA

Results Optimization of tissue model

Results Validation of tissue model

15

20

25

<≈ 5%

Tissue Model Tissue models//limitations

1. body information related to each tissue model.

impact body parts	mean stature	mean weight	body mass index
lower arm bone	1.78m	80.7kg	25.46
lower arm muscle	1.76m	78.6kg	25.37
upper leg muscle	1.77m	75.8kg	24.2
body stature body weight \downarrow change scale vector \downarrow $V_{longitunidal}$ $V_{transversal}$ $V_{sagittal}$			

- 2. range of the impact energy
 - research on the threshold for the appearance of pain without injury
 - the change of the impactor geometry

Tissue Model Tissue models//limitations

- 3. simple model design for local body part with a thick layer of soft tissue
 - geometry in model with higher similarity to the real tissue
 - whole deformation incl. bone

Tissue Model Tissue models//hand tissue model

© Fraunhofer IFF, Magdeburg 2018

FE-SIMULATION OF IMPACT LOADS ON THE HUMAN BODY: METHODOLOGY FOR THE DEVELOPMENT OF TISSUE MODELS

Zechang Wang, Roland Behrens, Prof. Dr. Norbert Elkmann Fraunhofer IFF – Robot System

