

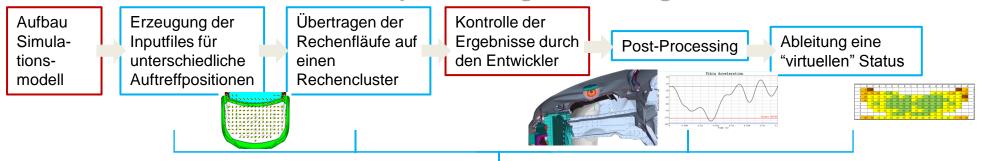
Eine effiziente CAE-Prognose im Fußgängerschutz durch den Einsatz von Optimierungstools

LS-DYNA Anwenderforum 25. Sept. 2013 Dr. SarahEngleder, <u>Dr. Heribert Kassegger</u>

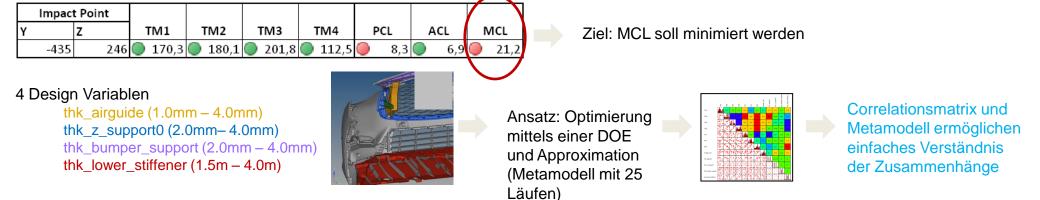
Inhalt

- Motivation: Warum benötigen wir Optimierungstools
- Der Prozess einer effizienten Haubenentwicklung
 - Das Spannungsfeld Fußgängerschutz
 - Unterschiedliche Lösungsansätze zur Erfüllung der Anforderungen
 - Ein optimierter Entwicklungsprozess
 - Beschreibung des Prozesses der Topometrieoptimierung
 - Die Ergebnisse der Optimierung
 - Zusammenfassung und weitere Schritte

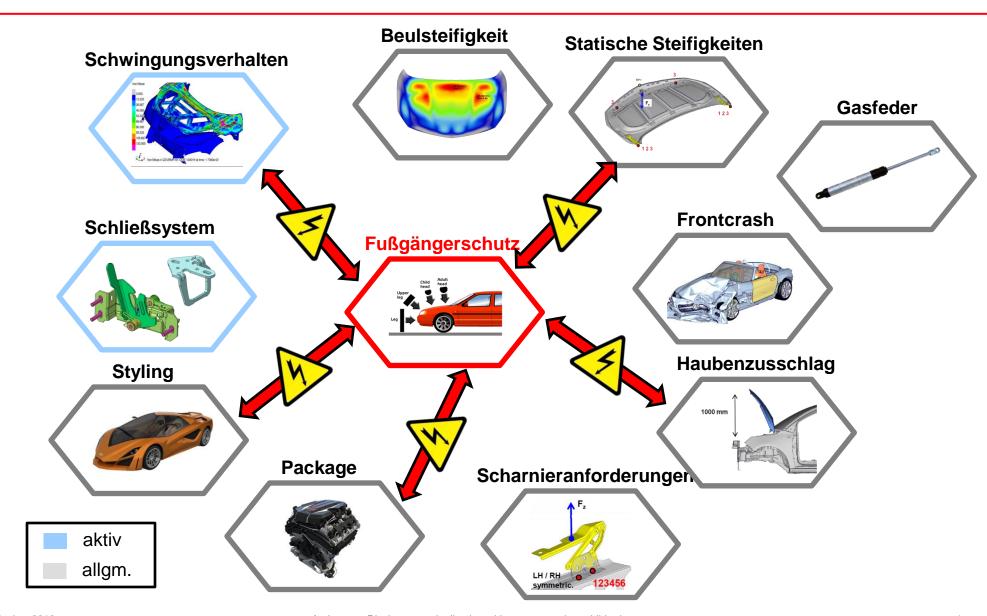
Metamodell zur raschen Beurteilung einer Fahrzeugfront für den Lower Leg Anprall


- Aufgabenstellung
- Nachstellung der Fahrzeugfront in einem Prinzipaufbau
- Validierung des Prinzipfaufbaues
- Ableitung eines Metamodells
- Zusammenfassung und Ausblick

Motivation


Warum benötigen wir Optimierungs- bzw. Automatisierungstools?

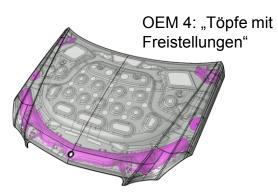
Der CAE-Prozess für eine FGS-Kopfaufschlagentwicklung:


→ Dieser Prozess kann als Designstudie definiert werden (DOE) mit den Designvariablen "Kopfpositionen" → hoher Automatisierungsgrad

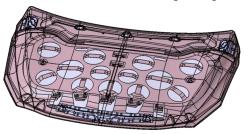
Ein klassisches Optimierungsproblem am Beispiel FlexPLI:

Das Spannungsfeld Fußgängerschutz

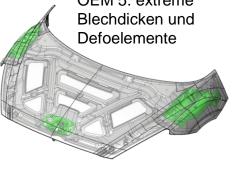
Unterschiedliche Geometrien von FK-Innenblechen

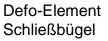

Erfüllung der Anforderungen durch unterschiedliche Lösungsansätze

OEM 1: Gezielte Schlitzgeometrie



OEM 3: "deformierbare Konsolen"



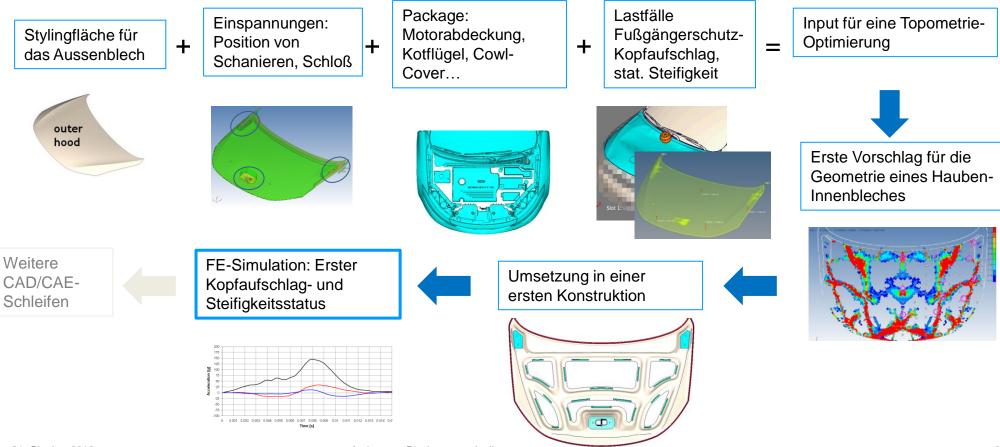

OEM 2: unterschiedliche Tiefe und Breite der Verbindungsstege

OEM 5: extreme Defoelemente

Doppelkammer -Dichtung

13

Defo-Element an Puffer


Kollabierende Abstützung Schallisolierung

Ein "optimierter" Entwicklungsprozess

Ziel: Erhalt eines ersten Konstruktionsvorschlages für ein Haubeninnenblech mit einem guten HIC-Wert für den Kopfaufschlag und guten stat. Steifigkeitswerten

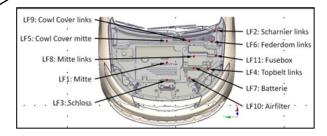
Vom Styling bis zum ersten Vorschlag für die Konstruktion:

Vorgabe für die Topometrieoptimierung (F&E-Projekt zusammen mit Fa. Dynamore)

• Einspannungen: Position Scharniere und Schlösser

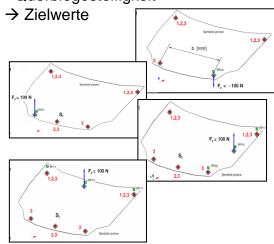
• Hüllfläche der blockenden

Angaben zum Material von Außen- und Innenblech


 $HIC = \max_{T_0 \le t_1 \le t_2 \le T_f} \left[\left(\frac{1}{t_2 - t_1} \int_{t_1}^{t_2} R(t) dt \right)^{2.5} \mathbf{Q} - t_1 \right] < 1000$

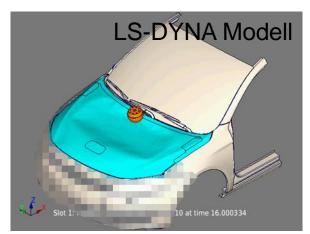
Mit R(t).... resultierende Beschleunigung in [g] t; Zeitdauer in s

 $t_2 - t_1 \dots .max. 15ms$


Lastfall Kopfaufschlag:

- Aufschlagpositionen
- Kinderkopf/Erwachsenenkopf
- Zielwerte für HIC

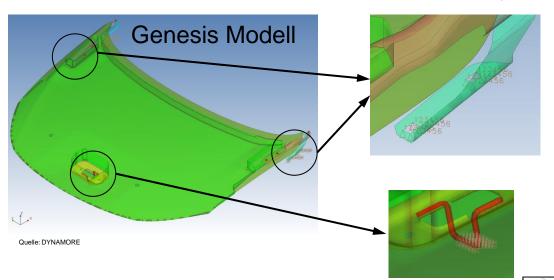
Lastfall statische Steifigkeit:


- Torsionssteifigkeit
- Eckbiegesteifigkeit
- Längsbiegesteifigkeit
- Querbiegesteifigkeit

Formulierung des Optimierungsproblems

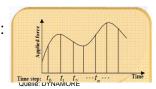
- Außenblech: Material H220, Dicke: 0.6mm, Innenblech DX56 → zusammenfallende Elemente und Knoten
- Topometrie-Optimierung: als Designvariable wurde die Dicke der einzelnen Elemente definiert → um die Anzahl der Variablen reduzieren zu können, wurden immer 4 benachbarte Elemente zusammengefasst Annahme: Symmetrie in y-Richtung
- LS-Dyna-Modell für nichtlineare Kopfaufschlagsimulation: sehr vereinfachtes Fahrzeugmodell mit der Abbildung der Einspannungen (Scharniere, Schloß, Scheibenwurzel, Kotflügel) und blockenden Elementen im Motorraum

Ouelle: DYNAMORE


Formulierung des Optimierungsproblems

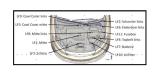
Genesis-Modell für die Optimierung mit der ESL (equivalent static load)-Methode:

Problem: nur Größen die mit einem linearen statischen Modell errechnet werden können, können als Zielfunktion od. Nebenbedingung angegeben werden → Optimierung nach dem HIC = HIC(a, t) nicht möglich!


nur mehr Haubenfläche mit Scharnieren und Schlössern wurde abgebildet → Einspannungen durch SPC s Die vorausgehende LS-Dyna-Simulation wurde mittels 9 equivalent static load cases discretisiert (bei einer durchschnittlichen Simulationsdauer von 18ms je Kopfaufschlag $\rightarrow \Delta t=2ms$)

ESL-Methode:

Aus nichtlinearen dynamischen Lastfällen ergibt sich ein Verschiebungsfeld

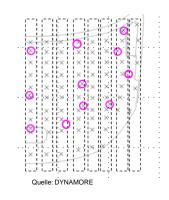

Equivalent static loads: $F_t(x) = K_{lin}u_t(x)$

mit $F_t(x)$ Kraft, K_{lin}.... Steifigkeitsmatrix u₊(x)..... Verschiebungsfeld

Werden statisch Lastfälle für die einzelnen Zeitschritte generiert

- Lastfälle:
 - 11 Kopfaufschlagpunkte
 - statische Lastfälle 4

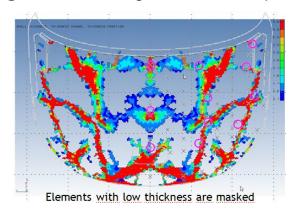
Formulierung des Optimierungsproblems

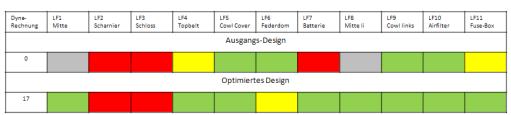


Zielfunktion und Nebenbedingungen:

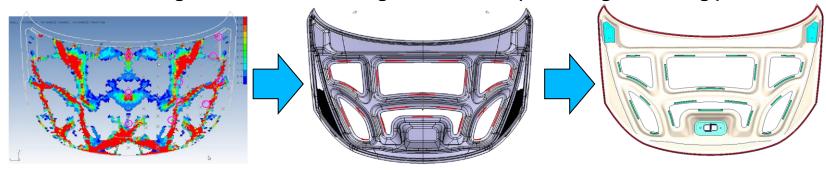
- → Maximale Deformation der Haube ohne jedoch auf harte Komponenten zu schlagen
- Zielfunktion: Maximierung der Verformungsenergie für Kopfaufprall (Ausnutzung des maximal möglichen Deformationsweges)

→ Nebenbedingungen:


- 1) Beschränkung der Verschiebungen in z-Richtung für die Kopfaufschlag-Lastfälle
 - → über die gesamte Haube wurden für ca. 80 Pkte die maximal mögliche Deformation definiert (gemessen zwischen Außenfläche und Hüllfläche der "harten" Komponente)
 - → nur für die ESL-Lastfälle mit großer Deformation (ab 6ms für jeden Kopfaufschlagpunkt: → 6ms, 8ms, 10ms, 12ms, 14ms, 16ms,18ms) → 11(Kopfaufschlagpunkte)*7(ESL)*80(Pkte mit Verschiebungsbeschränkung) = 6160 Nebenbedingungen
- 2) Beschränkung der Verschiebung einzelner Knoten für die statischen Lastfälle



Ergebnis der Optimierung


Ergebnis: Das Ergebnis dieser Optimierung ist dann eine Dickenverteilung.

Diese Dickenverteilung muss konstruktiv umgesetzt werden (Erfahrung notwendig!):

Die Kontrollrechnung ergab für

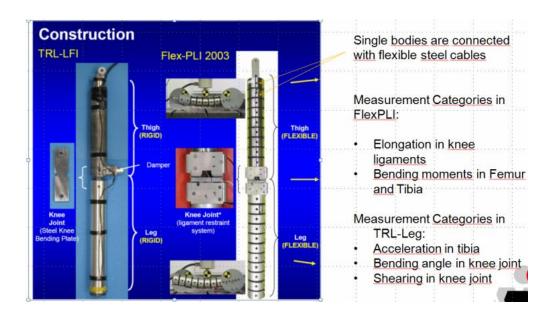
- Lastfall Kopfaufschlag: ähnliche Ergebnisse wie in der Optimierung (siehe oben)
- Lastfall Steifigkeit: Torsionssteifigkeit: Vorgaben erreicht

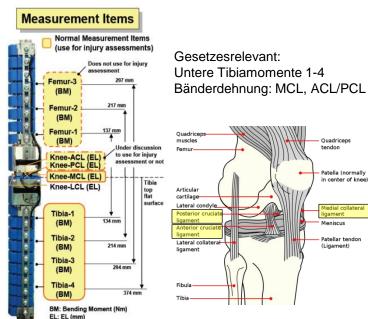
 Eckbiegesteifigkeit: Vorgaben erreicht
 Querbiegesteifigkeit: Vorgaben leicht überschritten

Längsbiegesteifigkeit: Vorgaben erreicht

Zusammenfassung und Ausblick

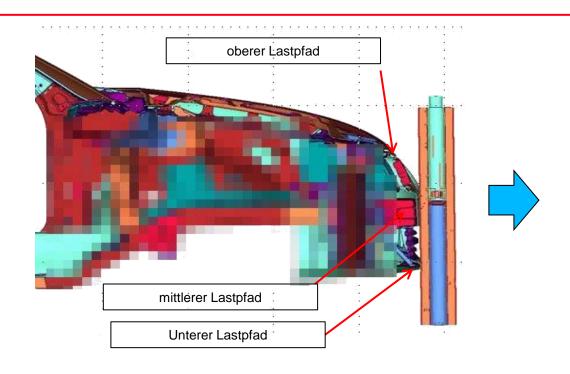
- Die Topometrieoptimierung für eine Frontklappe zeigt gute, verwertbare Ergebnisse → Vorgabe an die Konstruktion möglich
- Die ESL-Methode erweist sich als brauchbares Werkzeug für die Abbildung von Kopfaufschlag Lastfällen in der Welt der Optimierung
- Ein Prozess für die Verknüpfung von nichtlinearen dynamischen Fußgängerschutz Lastfällen und linearen statisch Lastfällen wurde erarbeitet und in Form einer Topometrieoptimierung umgesetzt.
- Als nächster Schritt sollte mit LS-OPT eine Parameteroptimierung durchgeführt werden, wobei sich die Länge der Kleberaupen, die Dicke der Verstärkungsbleche und diverse geometrische Anpassungen des Innenbleches u.s.w. als Parameter anbieten

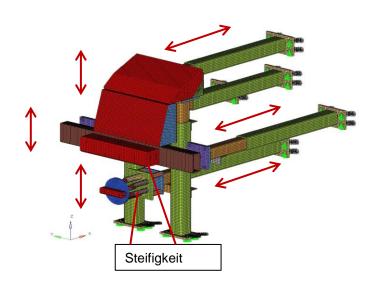

Metamodell zur raschen Beurteilung einer Fahrzeugfront für den Lower Leg Anprall



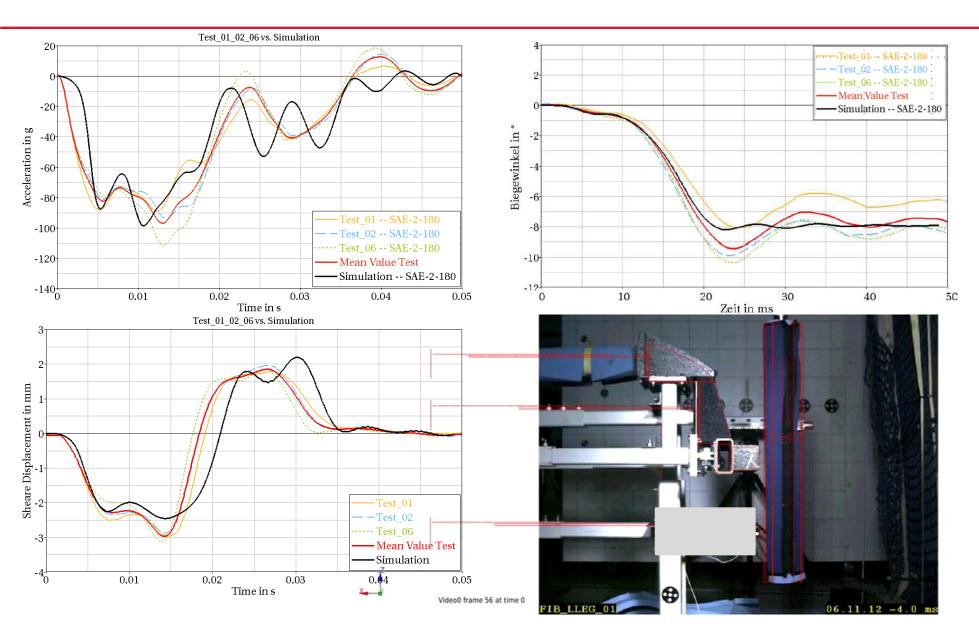
Aufgabenstellung:

- Auf Basis einer vorgegebenen Fahrzeugfront sollte ein Metamodell abgeleitet werden, welches es erlaubt unterschiedliche Einflussgrößen auf den Beinanprall einfach und rasch zu untersuchen und zu beurteilen
- Als Lastfall wurde der Beinanprall mittels TRL-Bein-Impaktor gewählt, allerdings mit der Option, später einmal auch den FlexPLI-Impaktor verwenden zu können

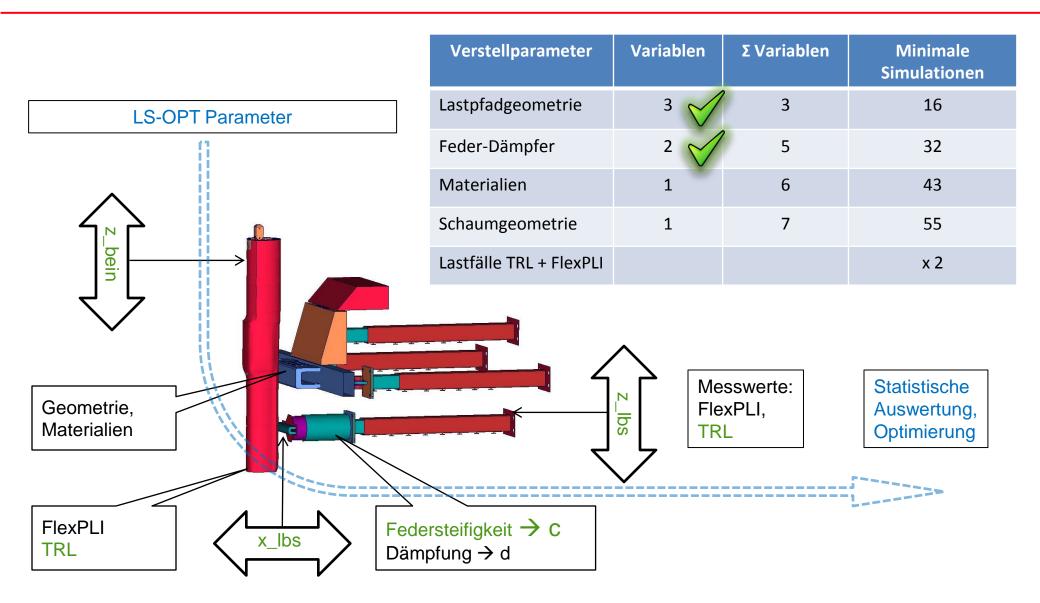

 Das Metamodell sollte auf Basis eines Prinzipmodells erstellt werden, sodass eine versuchstechnische Überprüfung jederzeit möglich ist

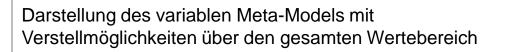


Nachstellung der Fahrzeugfront in einem Prinzipaufbau

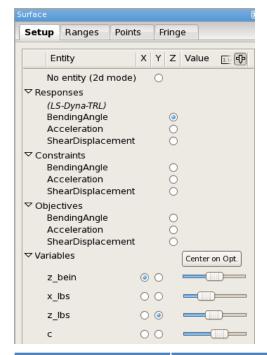

Beschreibung des Prinzipaufbaues

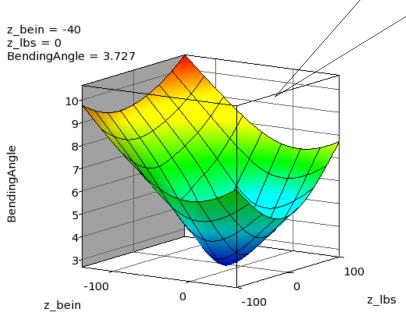
- Die 3 Lastpfade sind in x- und z-Richtung verschiebbar
- Der obere Lastpfad, die Geometrie des Fahrzeuges wurde mittels einfacher Blöcke aus EPP-Schaum nachgestellt
- Die Steifigkeit des mittleren Lastpfades kann durch Dichteänderung und/oder Geometrieänderung des Schaumblockes adaptiert werden
- Sie Steifigkeit des unteren Lastpfades kann mittels spezieller Feder/Dämpfer-Elemente eingestellt werden

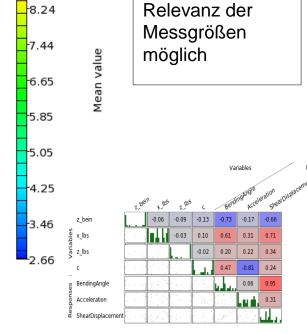

Validierung des Prinzipaufbaues


Ableitung eines Metamodells

LS-OPT-TRL




Anschauliche Darstellung der Zusammenhänge der einzelnen Messgrößen


10.6

9.83

9.04

Schnelle

Abschätzung der

	LS-OPT Prognose	TRL – Lauf (nach LS-OPT)
Beschleunigung	107 g	105,8 g
Scherung	3,2 mm	3,2 mm
Biegungswinkel	3,2	3,1

Zusammenfassung und Ausblick

- Das erstellte Metamodell ist ein gutes Entwicklungswerkzeug zur Abschätzung des Beinanprallverhaltens einer Fahrzeuggeometrie
- Die Korrelationsmatrix hilft komplexe Zusammenhänge besser zu verstehen
- Das Prinzipmodell erlaubt jeder Zeit eine Überprüfung der Ergebnisse mittels Realtests -> Prinzipversuchsaufbau steht als "Hardware" zur Verfügung

Nächste Schritte:

- Das Metamodell wird um zusätzliche Variablen erweitert (unterschiedliche Schaumdichten, Schaumgeometrien, FlexPLI)
- Validierungstests des Prinzipmodells mit dem FlexPLI

DANKE FÜR IHRE AUFMERKSAMKEIT