Thermal Abuse Simulation in a Battery

Dr. Rolf Reinelt

Ansys Germany

- What is thermal abuse?
- Objectives of simulation
- Components (Models)
- Results

What is thermal abuse?

Video found at https://www.ibtimes.com/tesla-newsmodel-s-crashes-tow-truck-russia-injuring-three-people-2812133

- Exothermic reaction within a battery cell
- Can quickly **propagate** to neighbor cells
- Does not need air to burn, hard to extinguish
- Can start by
 - Nail penetration
 - Internal short (dendrith growth)
 - External short
 - Crash
 - Thermal failures

https://www.ibtimes.com/tesla-news-model-s-crashes-tow-truck-russia-injuring-three-people-2812133

Objectives of simulation

- Does thermal runaway propagate to neighbor cells?
- How quickly does the propagation take place?
- Identify critical cells for start of thermal runaway
 - Reduce number of experiments
- What temperatures are reached, how much gas is released under what temperature and pressure?

- Nail model: Initiate the thermal runaway (in the lab, as a failure in the field)
- Internal short propagation (first mode of heat production)
- Thermal abuse model (1-eqn or NREL 4-eqn model)
- Gas release model
- Chemical reactions in gas/air mixture
- Boiling model of cooling liquid
- Particle release
- Damage modeling
 - Irreversible foam change
 - Melting
 - Deformation

- Nail model: Initiate the thermal runaway (in the lab, as a failure in the field)
- Internal short propagation (first mode of heat production)
- Thermal abuse model (1-eqn or NREL 4-eqn model)
- Gas release model
- Chemical reactions in gas/air mixture
- Boiling model of cooling liquid
- Particle release and tracking
- Damage modeling
 - Irreversible foam change
 - Melting
 - Deformation

Todays talk, Workshop on ALH Possible, but not tested yet for this application

- Nail model: Initiate the thermal runaway (in the lab, as a failure in the field)
- Internal short propagation (first mode of heat production)
- Thermal abuse model (1-eqn or NREL 4-eqn model)
- Gas release model
- Chemical reactions in gas/air mixture
- Particle release
- Damage modeling
 - Irreversible foam change
 - Melting
 - Deformation

Nail model

- Prepare in the battery geometry a small cylindrical region
- 2 different methods available:
- Heat source method
 - Apply for some time a heat source. Usually try and error to determine magnitude and duration. "just enough to start the thermal runaway"
- Specify internal short resistance
 - Would take into account the SOC
 - Non-trivial to find correct resistance
 - Requires to run dual-potential MSMD battery model

- Nail model: Initiate the thermal runaway (in the lab, as a failure in the field)
- Internal short propagation (first mode of heat production)
- Thermal abuse model (1-eqn or NREL 4-eqn model)
- Gas release model
- Chemical reactions in gas/air mixture
- Particle release
- Damage modeling
 - Irreversible foam change
 - Melting
 - Deformation

Internal short propagation

- Electric separator fails at temperatures lower than thermal abuse reactions
- Electric energy converted depends on (local) SOC
- Recommended: Reaction rate model (a 5th reaction similar to NREL 4 eqn model)
 - Does not require dual-potential MSMD model
 - Very efficient

$$R_{sh}(T, SoC) = ISC_{cond} \times A_{ec} \times \exp\left(-\frac{E_{ec}}{R_uT}\right) \times SoC$$

$$\frac{dSoC}{dt} = -R_{sh}$$
$$S_{ec} = H_{ec} \times R_{sh}$$

P. T. Coman, E. C. Darcy, C. T. Veje, and R. E. White, "Modelling Li-Ion Cell Thermal Runaway Triggered by an Internal Short Circuit Device Using an Efficiency Factor and Arrhenius Formulations", J. of the Electrochemical Society, 164 (4) A587-A593 (2017).

Case03 – Short Propagation Animation

©2021 ANSYS, Inc. / Confidential

- Nail model: Initiate the thermal runaway (in the lab, as a failure in the field)
- Internal short propagation (first mode of heat production)
- Thermal abuse model (1-eqn or NREL 4-eqn model)
- Gas release model
- Chemical reactions in gas/air mixture
- Particle release
- Damage modeling
 - Irreversible foam change
 - Melting
 - Deformation

Introduction of Battery Thermal Abuse Models

- Reaction kinetics are used to model the decomposition reactions.
- Two models have been implemented in both Twin Builder and Fluent
 - One-equation model
 - D. D. MacNeil, J. R. Dahn, "Test of Reaction Kinetics Using Both Differential Scanning and Accelerating Rate Calorimetries as Applied to the Reaction of LixCoO2 in Non-aqueous Electrolyte", J. Phys Chem., 2001.
 - NREL's four-equation model
 - T. D. Hatchard, D. D. MacNeil, A. Basu, and J. R. Dahn, "Thermal Model of Cylindrical and Prismatic Lithium-Ion Cells", J. of the Electrochemical Society, 2001.
 - Gi-Heon Kim, Ahmad Pesaran, Robert Spotnitz, "A Three-dimensional thermal abuse model for lithium-ion cells", J. of Power Resources, 2007.

1-Eqn Thermal Abuse Model

• Total heat generation due to thermal abuse can be modeled as one exothermic reaction.

$$S_{abuse_chem} = S$$

$$R(T, \alpha) = A \times \alpha^m \times (1 - \alpha)^n \times \exp\left(-\frac{E_a}{R_u T}\right)$$

$$S = H \times W \times R$$

$$\frac{d\alpha}{dt} = R$$

where A, m, n, E_{a_i} H, W are model constants; H specific heat (J/kg); W volume specific content (kg/m^3)

• This is a sub-set of the 4-equ thermal abuse model.

D. D. MacNeil, J. R. Dahn, "Test of Reaction Kinetics Using Both Differential Scanning and Accelerating Rate Calorimetries as Applied to the Reaction of LixCoO2 in Non-aqueous Electrolyte", J. Phys Chem., 2001.

			$k\alpha^m(1-$	$-\alpha)^n(-\ln \alpha)$	$(1-\alpha))^{p}$
	reaction model	$d\alpha/dt =$	т	п	Р
1	one-dimensional diffusion	$k\alpha^{-1}$	-1	0	0
2		ka	1	0	0
3	power law	$k\alpha^{1/2}$	0.5	0	0
4	power law	$k\alpha^{2/3}$	2/3	0	0
5	power law	$k\alpha^{3/4}$	3/4	0	0
6	zero order	k	0	0	0
7	contracting cylinder	$k(1-\alpha)^{1/2}$	0	0.5	0
8	contracting sphere	$k(1-\alpha)^{2/3}$	0	2/3	0
9	first order (n th order)	$k(1-\alpha)$	0	1	0
10	second order (n th order)	$k(1-\alpha)^2$	0	2	0
11	Avrami-Erofeev	$k(1-\alpha)(-\ln(1-\alpha))^{1/2}$	0	1	0.5
12	Avrami-Erofeev	$k(1-\alpha)(-\ln(1-\alpha))^{2/3}$	0	1	2/3
13	Avrami-Erofeev	$k(1-\alpha)(-\ln(1-\alpha))^{3/4}$	0	1	3/4
14	autocatalytic	$k\alpha(1-\alpha)$	1	1	0
15	two-dimensional diffusion	$k(-\ln(1-\alpha))^{-1}$	0	0	-1
16	diffusion controlled	$k(1-(1-\alpha)^{1/3})^{-1}(1-\alpha)^{2/3}$			
17	diffusion controlled	$k((1-\alpha)^{-1/3}-1)^{-1}$			

NREL's 4-Equ Thermal Abuse Model

Table 1. Abuse reactions included in NREL's abuse reaction kinetics model

Reaction #	Reaction	Possible Onset Temperature (°C)
1	Solid Electrolyte Interphase (SEI) layer decomposition	80
2	Anode — electrolyte	100
3	Cathode — electrolyte	130
4	Electrolyte decomposition	180

$$S_{abuse_chem} = S_{sei} + S_{ne} + S_{pe} + S_{ele}$$

$$R_{sei}(T, c_{sei}) = A_{sei} \times \exp\left(-\frac{E_{a,sei}}{R_u T}\right) \times c_{sei}^{m_{sei}}$$
$$S_{sei} = H_{sei} \times W_c \times R_{sei}$$
$$\frac{dc_{sei}}{dt} = -R_{sei}$$

Gi-Heon Kim, Ahmad Pesaran, Robert Spotnitz, "A Three-dimensional thermal abuse model for lithium-ion cells", J. of Power Resources, 2007.

Cell Thermal Runaway Validation

- The thermal conductivity within battery cell is anisotropy, which is 27 W/m-K, 27 W/m-K and 0.8 W/m-K in axial, azimuthal and radial directions, respectively
- Heat transfer rate along azimuthal and axial directions is faster than radial direction
- 1. "Numerical Investigation of Thermal Runaway Propagation Induced By Internal Short Circuits in a Li-Ion Battery Module", 231st ECS Meeting, New Orleans, LA, May 2017.

Ansys

ALH Tutorial

- The thermal runaway propagation will be performed on a module of 14 cells.
 - The nail region is at the center of the first cell.
- The geometry and the mesh is shown here.
 - The module mesh consists of 4.0 M polyhedral cells.

Thermal Runaway Propagation

- 14 cells in the module
- A pair of two cells shares a cooling fin.
- Thermal runaway propagates from one pair of cells to another.
- One of the design goals is to prevent such propagation.

Thermal Runaway Animation

Thermal Runaway Propagation Validation

Case No.	Testing Description	
Baseline	No thermal management	
A1	3.2 mm Al plates between Cells	
A2	0.8 mm Al plates between Cells	

2. Q Li, CB Yang, S. Santhanagopalan, K. Smith, J. Lamb, L. Steele, L. Torres-Castro, "Numerical Investigation of Thermal Management for Lithium-ion Battery Pack under Thermal Abuse Condition, J. Power Sources429 (2019) 80-88

Thermal Runaway Propagation Validation

Baseline

3.2 mm Al-sheet

- Nail model: Initiate the thermal runaway (in the lab, as a failure in the field)
- Internal short propagation (first mode of heat production)
- Thermal abuse model (1-eqn or NREL 4-eqn model)
- Gas release model
- Chemical reactions in gas/air mixture
- Particle release
- Damage modeling
 - Irreversible foam change
 - Melting
 - Deformation

Gas release (venting) model

- The released gas has properties of **hot air**, but is traced as venting-gas, which allows to determine an air to venting-gas ratio in the domain
 - The assumption is that all **oxygen in the battery** is very quickly replaced or consumed
- The total **amount** of gas set free for each cell is **user supplied**
- The current mass flow rate of gas is calculated from the rate of change of the electrolyte reaction in the corresponding active cell zone
- The temperature of the hot air is the average cell temperature
- The best run-time performance of this is obtained by using a user defined function (UDF)

- Nail model: Initiate the thermal runaway (in the lab, as a failure in the field)
- Internal short propagation (first mode of heat production)
- Thermal abuse model (1-eqn or NREL 4-eqn model)
- Gas release model
- Chemical reactions in gas/air mixture
- Particle release
- Damage modeling
 - Irreversible foam change
 - Melting
 - Deformation

Foam destruction

- Foam is transformed to a coal like solid
- If T>200°C, foam gets permanently a higher thermal conductivity
- State is tracked in User Defined Memory (UDM), property of each finite-volume cell
- Implemented as a User Defined Function (UDF)

New tutorial on ALH

- Uses all features presented so far
 - Initiate thermal runaway with nail region
 - Internal short circuit propagation
 - NREL 4-eqn model
 - Gas release
 - Irreversible foam change
- 10 prismatic battery cells
- 3.3 mio prism polyhedra cells
- Time step 0.025 s, 800 time steps, 20 s total
- 21 h on 32 cores
- Overnight on 128 cores

Thermal Abuse Model

			Batte	ry Model			\odot	\otimes
✓ Enable Batte	ery Model							
Model Options	Conduct	tive Zones Ele	ectric Contacts	Model Paran	neters	UDF	Advanced Options	1
Battery Pack B	Builder							
Battery BOM T	ool Kit							
✓ Thermal Abu	ise Model							
One-Equat	ion Kinetics Mod	lal 🔘 Eour-Equa	tion Kinetics N	lodel				
Matarial Mara								
Material Name	LI1.1 <ni1 3c01<="" td=""><td>/3/011/3>0.902</td><td>Material Dat</td><td>abase</td><td></td><td></td><td></td><td></td></ni1>	/3/011/3>0.902	Material Dat	abase				
SEI Decompos	ition Reaction							
A_sei (e10*1/s) 166700	E_sei (J/mol)	135080	m_sei (-)	1			
H_sei (J/g)	257	W_sei (g/m3)	610400	c_sei0 (-)	0.15			
Negative-Solve	ent Reaction							
A_ne (e10*1/s)	2500	E_ne (J/mol)	135080	m_ne (-)	1			
H_ne (J/g)	1714	W_ne (g/m3)	610400	c_neg0 (-)	0.75			
t_sei,ref (-)	0.033	t_sei0 (-)	0.033					
Positive-Solve	nt Reaction							
A_pe (e10*1/s)	22500	E_pe (J/mol)	154000	m_pe1 (-)	1			
H_pe (J/g)	790	W_pe (g/m3)	1293000	m_pe2 (-)	1			
alpha0 (-)	0.04							
Electrolvte Dec	composition Re	action						
A_e (e10*1/s)	5.14e+15	E_e (J/mol) 2	74000	m_e (-) 1				
H_e (J/g)	155	W_e (g/m3) 4(06900	c_e0 (-) 1				
 Enable Interr 	nal Short Heat							
nternal Short H	leat Reaction							
A_ec (e10*1/s)	337	E_ec (J/mol)	95150	H_ec (J/m3	6.12e	+08		
T trigger (K)	330	SOC (-)	1					

				Mass-F	low Inlet			\odot	\otimes
Zone Name									
cell-01-fluid_a	air								
Momentum	Thermal	Rad	liation	Species	DPM	Multiphase	Potential	UDS	
	Reference F	rame	Absolute)					•
Mass Flow Specification Method Mass Flow Rate								•	
	Mass Flow	v Rate	udf mas	sflow_profile:	:libudf				*
Supersonic/I	nitial Gauge Pre	ssure	[Pa] 0						•
Direction	Specification M	ethod	Normal t	o Boundary					•
Acoustic Wa	ve Model								
Off									
O Non Ref	lecting								
Impedar	nce								
 Transpa 	rent Flow Forci	ng							
Turbu	lence								
s	Specification Me	thod	Intensity	and Viscosit	y Ratio				•
	Turbulent Inte	nsity [%] 5						Ŧ
Turb	ulent Viscosity	Ratio	10						•
Apply Close Help									

Poron with non-reversible material property

- Activate 1 user defined memory (UDM)
- Hook UDF for thermal conductivity

	Create/Edit Materials	\odot \odot \odot
Name	Material Type	Order Materials by
poron	solid	 Name
Chemical Formula	User-Defined Solid Materials	Chemical Formula
	poron	▼ Fluent Database
	Mixture	Fluent Database
	none	GRANTA MDS Database
		User-Defined Database
Properties		
Density [kg/m ³]	constant	▼ Edit
	300	
Cp (Specific Heat) [J/(kg K)]	constant	▼ Edit
	1	
Thermal Conductivity [W/(m K)]	user-defined	▼ Edit
	poron_thermal_conductivty::libudf	
	Change/Create Delete Close Help	

Poron non-reversible change

The flag for poron change is activated in all 9 regions

Animation

©2021 ANSYS, Inc. / Confidential

Powertrain, Electric | Battery Manage Thermal Runaway

Customer Goals

- Ensure that a **thermal runaway event will stay within regulatory** limits.
- **Reduce development time and costs** by replacing expensive measurements with simulation.

Solution

- Heat sources and thermal conduction are modeled with build-in models of Ansys Fluent
- Gas release from cells is captured with a UDF which relates the reaction progress in each cell with a mass flow inlet at the venting holes of the cells

Benefits

- Tracing the hot gases within the battery will capture a heat transfer mechanism that is very important in some designs
- Experimental testing is very expensive as the prototypes will be destroyed in due process and lab needs special fire protection
- Gain insight to design heat shields, heat capacities, and flow guides.

Appendix

A thought about experiments

• How good are experiments in reproducing the time to thermal runaway? In the sense of taking 10 new cells of the same kind and bringing them to thermal runaway. What would be the distribution of times measured?

