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Abstract

When investigating the limiting states of materialsder dynamic loading conditions, it's
important to specify the dependency of plastiafailstrain on the stress state. Usually, such
dependence is build upon the experimental dataimédafrom dynamic tests in tension and
compression of solid cylindrical specimens withedént working part geometry, followed by a
monotonic extrapolation. In the recent studies fhg existence of complex, non-monotonic
dependence of failure strain on the stress statamaters is shown for a number of materials.
In these cases, a mentioned set of tests is nagérto construct a reliable criterion relations. In
statics, one of the most informative experimentshi® failure criterion construction is a torsion
test on solid or thick-walled cylindrical specimeAdthough a nonuniform stress state arises in
the sample in this case, effective methods offéspretation are developed [2,3]. The theory of
this experiment conformably to the dynamic procestdarge plastic strains has not yet been
developed. Using the LS-DYNA implemented virtugtl bench, the experimental setup for the
solid cylinder torsion test with high strain rateed methods of its stress state identification are
discussed. It is shown that for the strain rategamf 16-10" 1/s the kinematic hypotheses that
are taken in the quasi-static torsion are validattlallows the effective use of known methods of
the sample’s stress state decoding.
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Introduction

Adequate construction of the failure criterion itwes an experimental study of fracture
in different types of stress state, while experiteeén tension and compression traditionally used
for this purpose are not enough by force of a ficant nonmonotonicity of fracture surface. For
the construction of the fracture surface in thisegcabesides compression and tension
experiments, additional shear tests as well as swdbbiaxial tests with thin-walled tubular
specimens of different geometry should be condudBaing fully justified to determine the
dynamic deformation curves, this approach may ptovbe insufficiently substantiated in the
investigation of fracture due to loss of stabiliysuch samples before failure, and, accordingly,
the emergence of significant heterogeneity of tiness state in the specimen. In statics, one of
the most informative and reliable experiments tastauct the fracture surface is a test on the
pure torsion or torsion combined with tension (cossgion) using solid or thick-walled
cylindrical specimens (also the internal and exkmressures can be allowed). Despite the
inhomogeneous state is realized in such specinegfegitive methods for its interpretation are
developed [2]. This approach was also extendedrgelstrains [3]. In general triaxial case, these
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methods are the generalizations of imaginary tultkaadegenerate imaginary tube methods [2],
which are based on the natural kinematic hypothektse radial fiber straightness and the cross
section rigid body rotation, together with the ingwessibility condition.

Degenerate imaginary tube method

Consider, for brevity, the method of degenerategimay tube with respect to biaxial
loading of a thick-walled cylindrical specimen wiéngth|, inner radiusy, and outer radius,

in the initial configuration by axial forc® and torqueM . In this case, in accordance with the
above mentioned hypothesis, the relationship betvlee specimen coordinates in the actual and
initial configurations relative to the natural ewdrical coordinate system has the form:
R(t) = (I/ L(t))"?r
P(t) =p+(0t)/1)z
Z(t)=(L(t)/ )z
It's convenient to use the stress tensdf = (g;) and tanstE™ =(§)  tensor

to represent the stress-strain state in the saimpihés case [2], which are defined by the Cauchy
stress tenso& and the strain rate tens@ components in a moving orthonormal frarﬁe

bound to the coordinate vectors of natural cylicalrbasis, so that
E*=[R'DRdt "= RZ R

&K il %] (&) (8] [3
flt , 1k, b=18F, 1Bt= *@
Ko=2) [k &) &) le

In this case, thgeR strain tensor components inside the sample caxpessed through
local axial¢ and shea” deformations on the outer surfare= R, by the formulas:
e,(r, 1)) =&(t)
£(t)
rt)y=-——2=
&p(r) ===

1 r r
rnt)==yt)a+ 2y)—
&5(1, 1)) 2V( X (Ir ) )r2
Local stresses in the sample are associated witxiahforce P and momentM by formulas:
R
2an1 o,RdR= R

2nj§ 0,,R?dR= M(}

The aim of this method is to express the localssege at the outer surface of the sample
through the integral force characteristidd, and M, as a function of the local boundary
deformation procesd1=(&,)). In general case, the procedure of the local strstate
determination is given in [1, 2]. Below, the basatations of the method, obtained for the case of
a solid circular cylindrical specimgfR =0, R = R), are provided as an example.

Consider two specimen deformation procesBesand N +d1 that follow two close
kinematic programge, y) = (£(t), y(t)) and . GiMe(ﬁl{thE))erimf}y of the strain rate irttbtials,
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and, assuming\P = P(NMN +d1)- M), AM =M (N +d1)-M (M) the following relations can
be obtained:

0.,(M) =AP/ 2R W+ 2F (27 R)

0,,(M) =AM/ (2R*h) + 3M/ (27R)

0,=0,=0

or, given the equalityh:A% ;

1 AP
Og(M) = [}/A_y"'zpj

2r1R?
1 AM
0,5(M) :ﬁ(VA—y"‘?’M j

Although, formally, it is required to hold bothais agreed to decrypt each local loading
process, we can show that in the case of routstentg implementing N deformation trajectories
of a one-parameter family, no more than (N +1) expents are required for their decryption.
The main obstacle to this approach implementatwwrdf/namic processes is that the kinematic
hypotheses used are not obvious. In order to vérédy validity, virtual tests using nonlinear LS-
DYNA code, modeling biaxial dynamic experimentstba combined compression (tension) and
torsion of solid and thick-walled cylindrical spewns by the Split Hopkinson Bar method, were
carried out.

Virtual experiments

Virtual experiments were conducted using nonline&DYNA code. Three types of
experiments were simulated with solid and thickladilcylindrical specimens: torsion of solid
specimen, pure torsion of thick-walled specimen #esion-torsion of cylindrical specimen.
Geometry for both tests is shown in figures 1a Hnd

a. Thick-walled cylindrical specimen b. Solid cylindrical specimen
Figure 1. Geometry of virtial test benches.

*MAT_224 material model was used in both tests for thectiral response simulation.
Stress-strain curves were given for different streates (800 to 6000 1/s). One end of the
specimen was clamped, while the other was subjeatprescribed rotation of 180 degrees in 0.3
ms. Figures below illustrate the validity of thatst kinematic hypotheses, showing effective
plastic strain, strain rate, triaxiality and Lodegke distributions in solid cylinder test.
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Figure 2. Solid cylinder test results.

It's seen from the figures that mesh in mid-secigonot deformed, having straight radial
fibers and rotates in time as a rigid body. That feonfirms kinematic hypotheses, that are
known to be valid in statics. It can be also sé the strain rate in the sample's outer diameter
reaches 5000 1/s, while the core remains elasticsttical. The Lode angle and triaxiality are
around zero, as for pure shear. Figures below gshewsame picture for thick-walled cylinder
under pure torsion and biaxial experiments.
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Figure 3. Thick-walled cylinder specimen tests lssu

As for solid specimen, it is observed that the mieskbach working part cross-section
remains undeformed, while stress state is sigmfiganon-uniformal.
Figure 4 shows the deformation procésgt), y(t)) on the outer surface of the specimen

for torsion-tension test in time plots.
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Figure 4. Deformation paths on the outer surface

Thus, the validity of the static kinematic hypotbess shown throughout the strain rate
range, allowed for this method @.010" s).
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Conclusion

While studying the failure criteria and constitativelations of materials under dynamic loading
conditions, experimental schemes of combined tgsth solid or thick-walled cylindrical
specimens in compression (tension) and torsiorfulige statics, can be effective. Using this
approach will help to construct the fracture swfadependence on the stress state more
accurately. The techniques imaginary tube and dggéen imaginary tube are invited to
determine the local stress-strain state in the garfipe validity of taken kinematic hypotheses is
justified by the computer simulation on virtualttbench.
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