A NEW ADVANCED VISCO-ELASTOPLASTIC
EIGHT CHAIN RUBBER MODEL FOR LS-DYNA

Dr. Tobias Olsson and Prof. Larsgunnar Nilsson
Engineering Research Nordic AB
587 58 Linkdping, Sweden
tobias@erab.se

INTRODUCTION

A new advanced eight chain rubber model has receetin implemented in LS-DYNA.
The material is tailored for polymeric materialfielbasic theory is taken from Arruda’s
thesis from 1993 but it has been enhanced with razbdh features such as the Mullins
effect, viscoelasticity, plasticity and viscoplasty.

The Mullins effect is described by two different deds: the first one is strain based
and developed by Boyce in 2004 and the seconcdeiggmased and developed by Ogden
and Roxburgh in 1999.

The viscoelasticity is based on the general Maxwedbry with up to six Maxwell
elements (a spring and a dashpot in series).

There are three different viscoplasticity modelplemented: a Norton model with
two parameters, a G’Sell model with six paramegard a strain hardening model with
four parameters. The plastic yield strength is Basethe eight parameter Hill model.

The material model has been used to simulate a &®sipn test with a rubber
specimen. The material parameters were obtained iinwerse FE analys and parameter
fitting using LS-OPT and a force-displacement ds¢h The result shows that this
material model can predict rubber behaviour inlinh experimental results.

MATHEMATICAL FRAMEWORK

This model is based on the work done by ArrudaBaoyte, i.e. in Arruda’s thesis from
1993. The eight chain rubber model is based onrsfasticity and it is formulated by
using strain invariants. The theory is based orsgii of the deformation tensdt into
an elastick,and a plastic parf,. From Arruda’s thesis, the eight chain model only

utilizes the first invariant, =tr(C,) whereC, =F.'F, is the right Cauchy Green

deformation tensor. The strain softening is takemfwork done by Boyce 2004, where
the strain energy used is defined as

W=vsﬂ{x/W/\C/3’+Nln( 5 H+K‘Pz =W+,

sinhg
where the amplified chain stretch is givenAy = \/X‘)_Iz —1i+1and
A\
= L—l c ,
o=

where A> =1,/3, u is the shear modulus of the soft domain, N isniln@ber of rigid
links between crosslinks of the soft domain regianis a saturation parameter and
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X =1+ Al-v,)+B(1-v,)* is a general polynom describing the interactionveen the
soft and the hard phases (Boyce 2004 and TobiMarichs 1957).

The compressible behavior is described by thers@éaergy part:
W, :i(vconln\l + Vl - j

con
con

wherev_, is a compressibility parameter addis the determinant of the deformation

gradient.
The Cauchy stress is computed as:

GZEFea_LPFeT :iFe(Sl"'Sz)FeT :VSXIU\/NL_l = (Be_illlj
J "aC, J 3 A,

, 2K [1_ 1 j
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Where S, and S, are the second Piola-Kirshhoff stresses base#,oand WV, ,
respectively.

Mullins effect

Two different models for the Mullins effect are ilemented. Firstly the model described
by Boyce 2004 is a strain driven softening modék €volution of the softening is
described by the following equation:

JN -1

Vs = Z(Vss _Vs) 2 ATaX1
(VN - A=)
where Z is a parameter that characterizes the evolutien with increasingA™. The

parameten is the saturation value of, . Note thatAT™is the maximum of\ . from
the past:
A :{ 0 Ag<AP

A, N >N
It means that the structure evolves with the deformation didsgpation inequality
requires that the evolution of the structure is irreversibte0 (see Boyce 2004).

The second model available for the Mullins effect is Bamework done by Ogden and
Roxburgh 1999. When activated, the strain energy isnaatd eight-chain (Arruda-
Boyce) model. That is, the following parameters are autoaitiset: Z = 0,v, =1 and
X =1. The stress is a multiplicative split between the virginaesp and the softening
parameter:

G =/]c

n :1—ierf(—qu — Wriaxj
m. o (my+m,Y¥;

where
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andm,, m, and m, are material parameterd,™ is the maximum strain energy that has
been achieved in the loading path.

Viscoelasticity

Two viscoelastic models are available. Firstly we hareédel where the viscoelasticity
is based on a generalized Maxwell model described in pi@kzg2000). The evolution
equation for the in-equilibrium stresses has the form

Qu_pp 4% _ s
a>’1

) +=9 =28 — =
Qw T, Pa dt oC,

where a is the number of viscoelastic terms (max 6). Thawgion is integrated and

solved for each time step and the total secon@goshhoff stress is given as

6
S=S,+S, +2Qa
a=1

Secondly we have added viscoelastic model whosketemo equation is based on Simo
and Hughes (2000) and renders

O, +Q0 = pVe O _Vag

T r,oC, 1

a

wherea is the number of prony terms (max ), 2 0,7, > . The equation is

integrated and solved by a recursion scheme antilesecond Piola-Kirchhoff stress is
given by

1
a

6
S=y,5+S, +ZyaQa

o=1

where0O< )y, <1 and
Vo =1=> ¥,

When the second Piola-Kirchhoff stress has beetulzdéd the total Cauchy stress is
obtain by a standard push forward operation:

o leeSFeT.
J

Plasticity and Viscoplasticity
The plastic relation is based on the general Hylisld criterion
f=04 -0, <0
where
Uezﬂ - F(Uzz - 033)2 + G(033 - 011)2 +H (011 - 022)2 + 2I-0-122 +2M 0223 + 2N0-123
and the hardening is either based on a load cir{eYILDO) or an extended Voce

hardening
4

Oyg =O0ygo + ZQ. (1_ e&?)_

i=1
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For the viscoplastic phenomenon, we simply addemodution equation for the effective
plastic strain rate. Three different evolution laave available.
* A simple Norton model with two parameters and wlikeseffective plastic strain
rate is given by:

The yield criterionf < 0gives the final equation to solve

f—grSK, =0
where ¢, is the effective plastic strain rate alkd and S, are viscoplastic
material parameters.

* A G’Sell model with six parameters and where tHeative plastic strain rate is
given by:

; S

The yield criterion gives the final equation tdveo
f - Kle325§f3 (1_ e_S.L(Eeff+K2))6'J/33 =0
whereK,,S,K,,S,,K; and S; are viscoplastic material parameters.
* A strain hardening model with four parameters ahéne the effective plastic

strain rate is given by:
S
A f _
Eup :(?j (geﬂ + Kz)sZ

1
The yield criterion gives the final equation towvsol

& S
f-K b =0.
{(feﬁ +K2)SZJ

Kinematic hardening

The kinematic hardening is based on the effectiastig strain whereas the plastic
deformation is obtained from the plastic rate dbdmation

where the rate of the plastic deformation gradiegiven from the definition of the
plastic velocity gradient:

— -1 - _

L,=F, F,=>F,=F,L,.
Without loss of generality we assume that the gmireetric part of the velocity gradient
is included in the elastic deformation. The updatenula for the plastic deformation
therefore renders
+1
F,')‘ = F; +AtF3Dr,‘)
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The back stress is now calculated similar to thedfig stress above but without the

softening factors:
:ﬂﬁL—l L (| _}| pcglj
33 A, (WUN 3

whereC , = Fng, I, = tr(Cp) and 4, is a hardening material parameter. The total

Piola-Kirschhoff stress is now given I8/ =S—-p and the total stress is given by a
standard push forward operation with the elastfordeation gradient, .

EXPERIMENTS

The investigated rubber material was Trelleborgustidal Rubber, material # 9038703,
with hardness 7215 Shore. A series of tests waduwziad where cylindrical test
specimens were subjected to axial and radial cossfme tests, shear tests, and combined
axial compression and shear tests. Only the agialpcession tests are considered in the
present study.

The compression specimen according to ISO 7743:&688ists of a cylinder with a
diameter of 30 mm and a height of 12.5 mm. Thendgr is compress between two
parallel highly polished flat metal plates. In artle accomplish an approximate
homogeneous state of deformation the flat surfae¥e lubricated with Teflon.

Each specimen was first loaded and unloaded to S0#pressionX/Ao=-0.5) in ten
cycles. A loading speed of 400 mm/min was applrethis pre-loading, and it was found
that the effect from the loading speed on the sypeset test results could be neglected.

The subsequent axial compression tests were caatlatthree loading speeds, i.e. 40
mm/min, 80 mm/min, and 400 mm/min. Each axial coespion test was repeated five
times. A typical load deformation test result iswh in Figure 1.

12000

10000 -

8000 -

6000 /

4000 - /
2000 | / /
==

0 1 2 3 4 5 6

Compression [mm]

Axial load [N]

Figure 1: Cyclic load of rubber specimen. Loadipged 400 mm / min.
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PARAMETER IDENTIFICATION AND VALIDATION

This model was calibrated against a real compregsst using LS-DYNA and the
optimization software LS-OPT v.4.1. As describedh@a previous section the specimen
where compressed 50%, which corresponds to a despkat of 5.7 mm and a
compression force of 1.0 kN.

The simulation and optimization where done on afBsymmetric model with two

rigid plates and one rubber specimen. The rubbegisen with geometry 13.8x12.7 mm
(height x length) in its initial state, were comgsed into 18.5x7.0 mm which can be seen
in Figure 2. The two plates (not shown) were tréatéh Teflon to minimize the friction
between the plate and the rubber.

Figure 2: The initial configuration to the left atige final compressed state to the left.

The behaviour of the rubber specimen where asstonextlude viscoelastic,
viscoplastic and plastic phenomena. Seven parasnete chosen for the optimization:
the bulk modulus, the shear modulus, the numberasis-links, the static friction
between the plates and the rubber, and the thraenpters that are included in the
Ogden-Roxburg Mullins model. The optimal configimatwhere achieved with LS-OPT
in 14 iterations while trying to minimize the exjeental force required to compress the
specimen with the force calculated from LS-DYNA €elt¢ptimal parameters can be seen
in Table 1.

Variable Value
Bulk modulus (K) 1.81 GPa
Shear modulusg) 1.15 MPa
Number of crosslinks (N) 32
Static friction coefficient 0.01

Mullins parameter 1 (M1) 1.35
Mullins parameter 2 (M2) 0.10
Mullins parameter 3 (M3) 0.72

Table 1: Optimum set of parameters for the rubbenpgression test.

The force-displacement plot in Figure 3 shows adgagreement with the experimental
values. Note that the experimental values are daen to fit the axi-symmetric model
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(thereof the much lower forces than in Figure hje Tast half of the loading path fits
very well with the experiment and the unloadinghpatalmost spot on. However, the
current model configuration is unable to captueedffect early in the load path, which
discrepancy may be corrected by activate the sthawen Boyce Mullins effect and
viscoelasticty.
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Figure 3: Force-displacement curves from the expanial test and the LS-DYNA
simulation. The experimental values are scaledt thé axi-symmetric simulation model.
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