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ABSTRACT  
 
A constitutive model for thermoplastics is outlined in this paper. The model consists of two 
parts: A hyperelastic-viscoplastic response due to intermolecular resistance denoted Part A, 
and an entropic hyperelastic response due to re-orientation of molecular chains called Part 
B. Both parts are developed within a framework for finite strains. The main constituents 
are the Neo-Hookean model describing large elastic deformations, the pressure-sensitive 
Raghava yield function, a non-associated visco-plastic flow potential and Anand’s stress-
stretch relation representing the intramolecular stiffness. The 11 non-zero coefficients of the 
model are identified from uniaxial tension and compression tests on two materials, HDPE 
and PVC, which are respectively semi-crystalline and amorphous thermoplastics. 
Subsequently, it is employed in numerical simulations of three-point bending tests on the same 
materials. The model gives satisfactory predictions when compared to experimental 
behaviour. 
 
 
1.  INTRODUCTION 
 
This paper presents a hyperelastic-viscoplastic constitutive model for thermoplastics [1]. It is 
partly based on a model described by Boyce et al. [2], but with some modifications. The idea 
of separating the response into inter-molecular and intra-molecular contributions, originally 
proposed by Haward and Thackray [3], is adopted. In our model, the energy-elastic 
deformation is represented with a Neo-Hookean model. Further, Raghava’s pressure-
dependent yield function is introduced [4], and a non-associated flow rule is assumed, 
applying a Raghava-like plastic potential. The entropy-elastic deformation is modelled with 
Anand’s stress-stretch relation [5]. The model involves 12 coefficients, whereof 11 are non-
zero. They can be determined from uniaxial tests in tension and compression.  
 
Section 2 of this paper provides a brief outline of the constitutive model. Thereafter, material 
tests on a high-density polyethylene (HDPE) and polyvinylchloride (PVC) are reviewed in 
Section 3. The results from these tests are used to calibrate the constitutive model, see Section 
4. Thereafter, the model is employed in numerical simulations of a tension test specimen and 
a three-point bending test. The predictions are compared with experimental results in Section 
5. Finally, Section 6 provides some conclusions and possible ideas for further work.  
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The model is implemented as a user-defined model in LS-DYNA [6], so far working for brick 
elements. A set of numerical verification tests has been carried out [1], showing that the 
model is able to capture pressure dependency, volumetric plastic strain, strain rate sensitivity, 
and induced strain anisotropy.  
 
 
 
2.  OUTLINE OF CONSTITUTIVE MODEL 
 
Figure 1 summarises the main constituents of the constitutive model proposed by Polanco-
Loria et al. [1]. The material response is assumed to have two resistances A and B, which 
represent the intermolecular and intramolecular (network) strength, respectively. Parts A and 
B are kinematically described by the same deformation gradient F . The Cauchy stress tensor 
σ  is obtained by summing the contributions of Parts A and B, i.e. A B= +σ σ σ .  

 
The deformation gradient AF  is decomposed into elastic and plastic parts, i.e. e p

A A A= ⋅F F F . 

Similarly, the Jacobian JA of Part A, representing the volume change, is decomposed as 
det e p

A A A AJ J J J= = =F . This decomposition of AF  means that the viscoplastic part of the 

model is formulated on an intermediate configuration AΩ  defined by p
AF  [1].  A compressible 

Neo-Hookean material is chosen for the elastic part of the deformation, and the Cauchy stress 
tensor Aσ  reads  

 ( )0 0

1
ln [ ]e e

A A Ae
A

J
J

λ µ= + −σ I B I  (1) 

 
where 0λ  and 0µ  are the classical Lamé constants of the linearized theory, ( )e e e T

A A A= ⋅B F F  is 

the elastic left Cauchy-Green deformation tensor, and I  is the second order unit tensor. The 
coefficients 0λ  and 0µ  may alternatively be expressed as functions of Young’s modulus 0E  

and Poisson’s ratio 0ν .  

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
Figure 1: Constitutive model with inter-molecular (A) and network (B) contributions. 
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The yield criterion is assumed in the form  
 

 ( ) 0p
A A T Af Rσ σ ε= − − =  (2) 

 

where Tσ  is the yield stress in uniaxial tension and ( )p
AR ε is a term allowing for hardening or 

softening. It should be noted that the term ( )p
AR ε  was not included in the description of the 

model presented by Polanco-Loria et al. [1]. The equivalent stress Aσ  accounts for the 

pressure-sensitive behaviour, commonly observed in polymeric materials, and it is defined 
according to Raghava et al. [4], viz.  

 

 
( ) ( )2 2

1 1 21 1 12

2
A A A

A

I I Jα α α
σ

α
− + − +

=  (3) 

  
The material parameter / 1C Tα σ σ= ≥  describes the pressure sensitivity, where Cσ  is the 

uniaxial compressive yield strength of the material, and 1AI  and 2AJ  are stress invariants 

related to respectively the total and the deviatoric Mandel stress tensor AΣ  operating on the 

intermediate configuration AΩ . More details, including relations between the different stress 

measures, are provided by Polanco-Loria et al. [1].  It is noted that the equivalent stress Aσ   is 

equal to the von Mises – equivalent stress 23Jσ =  when 1α = , i.e. C Tσ σ= .  

 

The term ( )p
AR ε  in Equation (2) reads  

 

 ( ) ( ) ( )1 expp p
A s T AR Hε σ σ ε = − − −   (4) 

 
where sσ  is the saturated stress level of Part A, and the decay coefficient H  is used to 

provide an optimum fit of the stress-strain curve between Tσ  and sσ . Clearly, Equation (4) 

represents hardening when ( )p
AR ε  is positive, while softening is obtained by selecting 

s Tσ σ< .  

 
It turned out that an associated flow rule predicts unrealistic large volumetric plastic strains. 
In order to control the plastic dilatation, a non-associated flow rule is introduced, applying a 
Raghava-like plastic potential function 
 

 
( ) ( )2 2

1 1 21 1 12
0

2
A A A

A

I I J
g

β β β
β

− + − +
= ≥  (5) 

 
where the material parameter 1β ≥  controls the volumetric plastic strain. Isochoric plastic 
behaviour is obtained in the special case of 1β = . A drawback of this choice of potential 
function is that it will predict plastic dilatation in compression as well as tension. 
Experimental observations on some materials indicate contraction in compression [7].  



8
th

  European LS-DYNA Users Conference, Strasbourg - May 2011  Page 4 

 

Finally, the plastic rate-of-deformation tensor is calculated from /p p
A A A Agε= ∂ ∂D Σ& . The 

equivalent plastic strain rate pAε&  is chosen as 

 

 
0

0 if   0

1
exp 1 1 if   > 0

A

p
A A

A A
T

f

f
C R

ε σε
σ

≤


  =    − −    +    

&

&
 (6) 

  
where R  is the hardening term defined in Equation (4). The two coefficients C  and 0Aε&  are 

easy to identify from uniaxial strain-rate tests. 
 
The deformation gradient BF of Part B, see Figure 1, represents the network orientation and it 

is assumed that the network resistance is hyperelastic. Following Anand [5], the Cauchy 
stress-stretch relation is given as 
  

 ( ) ( )1 * 21
ln

3
R L

B B
L

C
J

J

λ λ λ κ
λ λ

−  
= − +  

  
σ B I IL  (7) 

  
where the Jacobian detBJ J= = F , and 1−L  is the inverse function of the Langevin function 

defined as ( ) coth 1β β β= −L . The effective distortional stretch is ( )*tr / 3Bλ = B , where 
* * * T( )B B B= ⋅B F F  is the distortional left Cauchy-Green deformation tensor, and * 1/3

B B BJ −=F F  

denotes the distortional part ofBF . There are three constitutive parameters describing the 

intra-molecular resistance: RC  is the initial elastic modulus of Part B;  Lλ  is the locking 

stretch; and κ  is a bulk modulus. The coefficient κ  is fixed to the value 0 in the work 
presented herein, thereby ensuring that the stress state of Part B is deviatoric. By omitting Part 
A, however, the remaining Part B with 0κ ≠  may be applied for rubber modelling. 
 
 
 
3.  MATERIAL TESTS 
 
Two thermoplastics were acquired as large extruded plates 2000mm × 1000mm × 10mm for 
application in this study: A semi-crystalline high-density polyethylene (HDPE), and an 
amorphous polyvinylchloride (PVC). The material test coupons in uniaxial tension and 
compression, see Figure 2, as well as specimens for the validation tests were machined from 
these plates. Material tests on these materials have already been reported by Moura et al. [7]. 
New tests were now performed, however, to incorporate any possible effects of storage time, 
and with a different design of test samples. Unlike the previous study [7], there was not 
machined any imperfection in the gauge part of the tension sample, and cylinder-shaped 
coupons were applied instead of cubes in the compression tests. More details are provided by 
Hovden [8] and Haugen [9].  
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The tests were carried out in a servo-hydraulic testing machine under displacement control. 
The applied velocity and hence the nominal strain-rate e&  were constant in each test, and the 
applied rates were 10–3, 10–2 and 10–1 s–1 in both loading modes. In general, two parallel tests 
were performed in each case, and the scatter between these replicates was small.  
 
 
 
 
 
 
 
  
 

       (a)                 (b) 
 
Figure 2:   (a) Tension test sample.  (b) Compression test sample. 
 
The acquisition system of the machine provided measurements of the cross-head displacement 
and force. The capacity of the load cell was 20 kN. Moreover, each test was monitored with a 
camera taking digital photos for a subsequent determination of the full-field in-plane 
deformations applying digital image correlation (DIC). This system facilitates the 
determination of true longitudinal and transverse strains, respectively 1ε  and 2ε , at the 

surface of the coupon facing the camera. Moura et al. [7] provide a more thorough description 
of the processing of the photos. 
 
As shown by Hovden [8], Haugen [9] and also by Moura et al. [7], the transverse deformation 
of both materials is close to isotropic, i.e. 2 3ε ε= . The true stress in the tension samples can 

therefore be calculated from 
 

 ( ) ( ) ( )0 2 0 3 0 2exp exp exp 2

F F F

A w t A
σ

ε ε ε
= = =

⋅ ⋅
 (8) 

 
where F is the force measured during the test, and 0 0 0A w t=  is the initial cross-section area of 

the sample. A digital sliding calliper provided the measures of 0w  and 0t  for each specimen, 

which was susceptible to differ slightly from the nominal dimensions shown in Figure 2(a). 
The true stress was calculated in the section experiencing the initial localization. 
 
The DIC software was not applied in the compression tests. Similar to the tension specimens, 
the initial height 0h  and diameter 0d  were measured prior to each test. Assuming 

homogeneous deformation over the length of the sample, the longitudinal strain was found 
from the relation ( ) ( )1 0 0ln / ln 1 /h h h hε = = − ∆ , where h∆  is the shortening as measured by 

the servo-hydraulic machine. The digital pictures were employed in the determination of the 
transverse deformation, as they provided a measure of the diameter increase d∆  during the 
test. The transverse strain 2ε  is thus ( ) ( )2 0 0ln / ln 1 /d d d dε = = + ∆ . The current diameter d  

turned out to be the same over the height of the sample until 1 0.5ε ≈ , implying that rather 

large deformations were possible before any barrelling effect was present [8]. The last 
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equality of Equation (8) was used for calculation of the true stress in the compression tests as 
well, setting ( ) 2

0 0/ 4A dπ= .  

 
Representative stress-strain curves obtained at different nominal strain-rates in tension are 
shown in Figure 3, while compression data are presented in Figure 4. A significant strain-rate 
effect is present for both materials and loading modes. PVC experiences also a softening 
effect after yielding. Both materials are to some degree pressure dependent. PVC has higher 
yield strength in compression than in tension. The situation for HDPE is slightly more 
complicated. Without any local maximum point neither for the nominal nor the true stress-
strain curves, the yield stress is conveniently determined from the classical Considère 
construction. It turns out that the yield stress is almost identical in tension and compression 
for HDPE. On the other hand, the evolution of hardening between true strains of 0.1 and 0.5 
differs. Although not shown here, the full-field strain measurements also revealed that the 
deformation of HDPE is rather isochoric (volume preserving), while PVC dilates (volume 
increases) in tension [8].  
 

    
 
                 (a)                   (b) 
 
Figure 3:   True stress-strain curves in tension [8]. (a) HDPE.  (b) PVC. 
  
 

    
 
                  (a)                     (b) 
 
Figure 4:   True stress-strain curves in compression [8]. (a) HDPE.  (b) PVC. 
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4.  CALIBRATION OF CONSTITUTIVE MODEL 
 
The constitutive model depicted in Figure 1 involves 11 non-zero coefficients: 
  

• Spring A: Two elastic coefficients 0E  (Young’s modulus) and 0ν  (Poisson’s ratio).  

• Friction element A: The yield criterion applies the yield stress in tension Tσ , the ratio 

/C Tα σ σ= , and the hardening/softening parameters sσ  and H . Moreover, the 

coefficient β  is employed to control the plastic dilatation.  

• Dashpot A: Two strain-rate sensitivity parameters C and 0Aε& .  

• Spring B: Two coefficients RC  (initial elastic modulus) and Lλ  (locking stretch). The 

bulk modulus κ  is fixed to the value 0, ensuring that the hydrostatic stress of Part B 
vanishes. 

 
Details on the calibration procedure are provided by Hovden [8], and only a brief survey is 
given here. The measurements of transverse and longitudinal strains in tension give the 
parameters 0ν  and β . Further, one of the tension tests at the lowest strain-rate (10–3 s–1) 

serves as the baseline case, wherefrom most of the remaining coefficients are identified. The 
local strain rate at yielding is taken as 0Aε& . The shape of the true stress-strain curve 

determines whether the hardening (HDPE) or softening (PVC) option of Equation (4) is to be 
adopted.  Next, a plot of yield stresses in tension as function of the logarithm of strain-rate 
determines C. To obtain an optimum curve fit, the physical yield stress is assigned to Tσ  for 

PVC, and to sσ  for HDPE, and the values of these coefficients are found from the plot by 

extrapolation of the linear regression curve to zero strain-rate. Thereafter 0E  and H are 

determined together with the remaining coefficients Tσ   and sσ . The Part B parameters RC  

and Lλ  require some calculation efforts. Part A as defined by the coefficients identified so far 

is subtracted from the baseline stress-strain curve, yet also recognizing that Part B does not 
represent any uniaxial rather a deviatoric stress state. Finally, α is the ratio between the yield 
stress in compression and tension. All parameters are gathered in Table 1. 
 
 
Table 1:    Coefficients for HDPE and PVC [8]. 
 
 

 
0E  

(MPa) 

0ν  Tσ  

(MPa) 

sσ  

(MPa) 

H  α  β  
0Aε&  

(s–1) 

C  
RC  

(MPa) 

Lλ  

HDPE 800 0.40 13.0 23.9 39.6 1.00 1.04 0.0007 0.108 1.74 7.75 

PVC 3000 0.30 46.8 37.8 15.0 1.30 1.27 0.001 0.070 5.50 1.92 
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5.  VALIDATION OF CONSTITUTIVE MODEL 
 
As a first step in the validation process, the tension test sample was modelled in LS-DYNA, 
applying 1084 eight-node brick elements [8] and the coefficients of Table 1. Considering the 
baseline test at strain rate 10–3 s–1, Figure 5 shows comparisons between the force-
displacement curves found from the tests and with LS-DYNA. Applying the digital pictures, 
the displacement was determined by considering how the distance between two defined points 
evolved during the test. Thus, these points served as an optical extensometer. The same points 
were selected in the numerical simulations. The agreement in Figure 5 is excellent, and, 
although not shown here, the model predicts also the necking of the sample in an adequate 
way. 
 
 

      
 
                 (a)                     (b) 
 
Figure 5:   Force-displacement curves in tension at 10–3 s–1. Comparison of laboratory 

tests and numerical simulations [8]. (a) HDPE.  (b) PVC. 
 
 
Formally, a validation should apply other tests than those involved in the calibration, yet it is 
important for the subsequent numerical modelling that the validation tests are well-defined. 
Three-point bending tests are suitable for this purpose. The experimental set-up is shown in 
Figure 6. The rollers ensure that no bending moments are transferred to the supports. Four 
different plate thicknesses t = {4mm, 6mm, 8mm, 10mm} and two punch nose radii R = 
{3mm, 6mm} were applied. The bending tests were carried out in the same machine as was 
used in the material tests, and the cross-head velocity was 0.1 mm/s in all tests. Some of the 
tests with plate thickness 8mm and 10mm were painted with a speckled pattern and 
instrumented with a digital camera, facilitating determination of the strain field at the surface 
by means of DIC. 
 
Utilising the two symmetry planes, ¼ of the plate was modelled with brick elements in LS-
DYNA, applying 9 elements over the thickness and 25 elements in each of the in-plane 
directions. The coefficient of friction between the plate and steel parts was set to 0.1. 
Increasing the coefficient to 0.2 or lowering it to 0.01 did not give any significant difference 
in the results. 



8
th

  European LS-DYNA Users Conference, Strasbourg - May 2011  Page 9 

 

       
 
          (a)                             (b) 
 
Figure 6:   Set-up for three-point bending tests [8].  (a) 3D sketch.  (b) Drawing with 

dimensions. 
 
 
Figure 7 shows a comparison between the force-displacement curves found in the experiments 
and the numerical simulations for a nose radius of R = 3mm. The thinnest plates, having 
thickness 4mm and 6mm, are addressed in this figure. The agreement is satisfactory, although 
some discrepancy is present at large deformations. The constitutive model assumes that the 
stress-strain curves have the same shape in both loading modes and at all strain-rates. It 
appears from Figures 3 and 4 that this is not the case. In particular, the hardening effect at 
compression strains between 0.1 and 0.5 is not captured by the model. Another shortcoming 
of the model is the choice of plastic potential, see Equation (5). The Raghava function 
predicts dilation at all pressure states except for the special case of β  = 1, where the plastic 
deformation is incompressible. On the other hand, experimental evidence shows a contraction 
effect for PVC in plastic compression, while HDPE behaves close to isochoric, i.e. no change 
of volume. 
 
 

   
 
                     (a)                    (b) 
 
Figure 7:   Force-displacement curves from bending tests with R = 3mm [8].  (a) HDPE.  

(b) PVC. 
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Finally, Figure 8 compares the longitudinal normal strains in the tests and simulations, now 
addressing a 10mm thick specimen with DIC instrumentation. Again, the agreement is 
acceptable. Figure 8 indicates that the tension strains have a larger absolute value than the 
compression strains, and a more closely look at the data reveals that 75% of the middle 
section is in tension.   
 
 

 

    
 
               (a)                        (b) 
 
Figure 8:   Strain field from DIC measurements (left-hand part) and simulations (right-

hand part) at 10mm deformation. Nose radius R = 3mm and plate thickness 
10mm [8].  (a) HDPE.  (b) PVC. 

 
 
6.  CONCLUSION AND PERSPECTIVES FOR FURTHER WORK 
 
This paper outlined a new hyperelastic-viscoplastic constitutive model for thermoplastics. The 
model consists of two fractions sharing the same deformation gradient, and accounting in turn 
for the intermolecular resistance by pressure-dependent, non-associated hyperelastic-
viscoplasticity, and the network resistance by hyperelasticity for compressible rubber-like 
materials. The constitutive relation is implemented as a user-defined model in LS-DYNA, 
currently working for brick elements. 
 
The 11 non-zero parameters of the proposed model were determined for two materials, HDPE 
and PVC, applying data from uniaxial tension and compression tests at different strain rates. 
The experimental set-up included a digital camera, facilitating the determination of true 
stress-strain curves. Both materials exhibit significant strain-rate sensitivity. PVC has also a 
strong pressure-dependent response. 
 
The calibrated model was employed in numerical simulations of a tension test coupon and 
three-point bending tests. The force-displacement curve and the strain field as found in the 
experimental test were rather well captured in the simulations.  
 
The choice of the Raghava-like plastic potential is not the optimal one for all materials and 
loading situations. A closer look at the PVC tension samples reveal a significant voiding 
process. Also some PP materials experience a significant void growth process during plastic 
deformation in tension, see Delhaye et al. [9, 10]. An option might be to employ a potential 
which is function of the damage in the material. Moreover, the relationship between the void 
growth and macroscopic volumetric strains should have some more attention. Finally. visco-
elastic effects are not incorporated in the model presented herein, but they are probably of 
minor importance for problems involving monotonic loading and large plastic deformations. 
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