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September 11 Pentagon Attack Simulations Using LS-DYNA 
Phase 1, September 11, 2002, © Copyright 

 
Mete A. Sozen, Sami A. Kilic and Christoph M. Hoffman 

Reproduced with permission of School of Civil Engineering, Purdue University 

A special acknowledgement to “Dr. Sami A. Kilic, Purdue University” for the LS-DYNA model 
development and “Purdue University Aircraft Crash Simulation Team” for the overall effort of the 
group. 

Why? 

If any good can come from the events of September 11, it would be to understand in detail what damage 
occurred, how it occurred, and why it occurred. Then, we should be able to create superior structures that 
will protect life.  By simulating the chilling sequence of events, in this detail, we are able to fashion tools 
that help decision makers in the future to explore potential disasters before they happen.  

Problem Statement:  Simulate as faithfully as possible the effects of crashing an air frame loaded with 
fuel (simulating a Boeing 757) into a reinforced concrete frame similar to the one supporting the Pentagon 
building.  In particular, model the columns to have properties reproducing the behavior of spirally 
reinforced columns including the difference in material response of the concrete within and outside the 
spiral reinforcement. 

Purpose of the Effort:  Use the physically correct simulation results as input to animations and 
visualizations to produce a vivid reenactment of the impact of the aircraft on the Pentagon building and 
provide the larger team with the necessary data to construct these using 3D Studio Max, AutoCAD, and 
research tools. 

Problem Formulations:  Several problem formulations were investigated with the results sketched by the 
animations below.  A basic hypothesis, informally confirmed with engineers knowledgeable in this 
subject, is that the bulk of the impact damage is due to the body of fuel in the wing and center tanks.  
Most of the aircraft structure is light-weight low-mass, and relatively low strength, with the exception of 
the wheel undercarriage.  The experiments are 

1. A single body of fluid hits a single column.  The purpose of this simulation is to understand the 
response of a reinforced concrete column subjected to high-speed impact of the fuel in the aircraft 
tanks.  In particular, the relationship between the impact velocity of the fluid and the acceleration 
of the column has been studied.  

2. The body of the aircraft hits a single row of columns.  The columns model the structural properties 
of the first-story columns in the Pentagon, including the reinforcing bars and the material 
difference between the column core and the column facing.  The body is shredded as it impacts the 
structure, confirmed by aeronautical engineers to be plausible.  

3. The fuel tank hits three rows of columns.  The wing enclosure breaks open and the fluid spills.  
Wings are modeled without ribs, leading to a balloon effect.  

4. The right-wing fuel tank hits the first three rows of columns.  The fuel is modeled as fluid, and the 
problem is a mixed arbitrary Euler-Lagrange mesh formulation.  The fuel tank disintegrates, and 
the fuel disperses into the structure.  This time, the wing has ribs and the break-up is realistic.  
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5. The fuel fluid hits the columns and destroys those in the first two rows.  This simulation does not 
include a wing enclosure and so can be used to better understand the effect of the wing strength on 
the fuel dispersal.  

6. Run on the IBM Regatta machine.  This machine can run a heavier grade of LS-Dyna and 
therefore allows us to simulate a more detailed model.  This is a brief run.  

7. Full model run, coarse model formulation, run on the IBM Regatta.  Model includes all columns in 
the simulated frame and the complete aircraft.  The model size is approximately 300,000 nodes.  
The run took about 24 hours for 40 frames covering 0.2 sec real time.  

8. Full model run, detailed model formulation, run on the IBM Regatta.  Model has 1,000,000 nodes. 
With 50 frames computed in close to 68 hours, the simulation covers 0.25 sec real time.  Several 
observations stand out:  

o The simulation demonstrates that the number of columns destroyed in the facade of the 
building does not have to correspond to the wing span. The tips of the wings, having less 
mass, are cut by the columns rather than the wing cutting the columns.  

o The simulation suggests that the reinforced concrete column core will cut into the fuselage 
until the fuel depot reaches it, at which time the column is destroyed.  

o The simulation shows the deceleration of the plane after impact as witnessed by the 
buckling of the fuselage near the tail structure.  

Simulation Parameters:  The simulation uses adaptive time stepping which averages to approximately 
0.000001sec time steps.  We generate snapshots approximately 0.005sec.  The airplane is assumed to 
arrive with an estimated initial velocity of 800 ft/sec.  Penetration to column row 4 takes approximately 
0.1sec 

The Animations can be viewed at www.cs.purdue.edu/homes/cmh/simulation * 
 
 

  
Animations* Image Preview 

 
Animation 
Image Size 

Problem 
Size 

(nodes) 

Compute 
Time 

1. 

Single 
Column  

Pentium 4 

 

13.2 MB 100 K 10 hours 

2. 
Aircraft Body  

Pentium 4 

 

2.7 MB 50 K 7 hours 
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3. 

Wing w/o ribs  

IBM 
Nighthawk2 

16 processors 

 

All Objects 

Fluid 
 

Tank 
Enclosure 

Columns 
 

Close-up 
 
 

4. 
IBM 

Nighthawk 
16 processors 

 

  500 K 106 hours  

5. 
IBM Regatta 

8 RISC 
processors 

 

close-up 
1.2 M 
nodes 

    

6. 
IBM Regatta 
coarse model 

 

 Low-speed 
Replay 

300 K 
nodes 

24 hours  

0.2 sec 
real time 
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7. 
IBM Regatta 

detailed model  

 

Low-speed 
Replay  

Frame 50 big  

and small 

1 M nodes  

68 hours  

0.25 sec 
real time 

 

 The Larger Team and Responsibilities 

Project Conception  Mete Sozen  Engineering Models Sami Kilic, CE 

Simulation Setups  Sami "Dr. Click" Kilic  Scientific Supervision Mete Sozen, CE 

Infrastructure Support James Bottum 
Ahmed Sameh 

Supercomputer Runs William Whitson, ITaP 

Project Direction  Christoph Hoffmann  Animation Voicu Popescu, CS 

Mesh Generation Christoph Hoffmann, CS, CRI Story Board Scott Meador, CGT 

Graduate Students 
Amit Chourasia, CGT 
Hendry Lim, CS 
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DesignSpace Speeds Mitroflow International's Development of Pericardial Heart Valves  

 
Reproduced with Permission of ANSYS Inc. 

 
Heart patients with deteriorating heart valves have benefited from Mitroflow International's development 
of pericardial heart valves-prostheses that use bovine tissue rather than composite metals as moving parts. 
Mitroflow first developed these unique heart valve designs in 1982 for patients that wish or need to avoid 
the anti-coagulant drug therapy typically associated with the implantation of mechanical valves. Patients 
with pericardial heart valves need not take any medication nor suffer the side effects of drug therapy. 
Likely candidates for treatment with a Mitroflow pericardial heart valve include women of child-bearing 
age, older patients, and those for whom mechanical valves and the associated drug therapy is not an 
acceptable option. 

 
 

Recently, engineers at Mitroflow, based in Richmond, Canada (B.C.), began examining engineering 
software that would help reduce design cycles as well as improve the performance and longevity of the 
implanted valves. Regulatory agencies, such as the U.S. Food and Drug Administration, have stringent 
testing requirements for products like these. Mitroflow engineers realized that they needed to focus on the 
traditional three-year design cycle and evaluate simulation software that could assist them during initial 
design rather than as a means for final prototyping. They now use DesignSpace for Autodesk Mechanical 
Desktop from ANSYS Inc. (Canonsburg, PA). 

 
 

Constructing a Better Heart Valve 

Mitroflow's pericardial heart valve uses tissue that is harvested from the pericardial sac of cows. A single 
flap of bovine tissue is fashioned into the valve leaflets, which open and close as the heart beats to expel 
blood. The valve leaflets, which vary in size and thickness depending on the size of the patient's heart 
valve to be replaced, are mounted on the outside of the stent, a solid structure which holds the valve 
leaflets for attachment to the patient's heart tissue. The stent is constructed from an acetal homopolymer 
material that is selected for its "low creep" properties. The stent is an important design component and 
must be designed for maximum working orifice area while maintaining structural strength. A sewing ring, 
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which is molded from medical grade silicon, connects and conforms to the patient's cardiac tissue. A 
tightly woven medical grade Dacron(r) fabric is used to cover both the sewing ring and the stent. 

 

 
The stent is a valve component of design interest for improving the durability and longevity of the valves 
once implanted, according to Jennifer Arntorp, Engineering Manager at Mitroflow. Studies of previous 
heart valve designs showed an average life cycle of about 10 years (The current Model 12 valves have 
been tested in-house (in vitro) to last for almost 20 years without deterioration, with 10 to 15 years being 
the expected (in vivo) life span). Mitroflow engineers have two main objectives in the design of their next 
generation heart valve: (1) redesign the stent to increase the expected life of the implanted valve to 
between 15 and 20 years; (2) shorten the design cycle for the product, which traditionally has been as long 
as three years.As part of this effort, Mitroflow explored the use of simulation technology to examine the 
strength, flexibility, and deformation of the stent component. 

 
Practical Simulation Software 

According to Mark Chaplin, Engineering Technologist at Mitroflow, the company had evaluated 
traditional finite element analysis (FEA) packages as a way to shorten product development cycles and 
improve product performance. The company found traditional FEA software to be expensive and 
generally not easy to use. "We've reviewed other packages, and walked away from them in frustration," 
Chaplin explained. "When we evaluated DesignSpace (for Mechanical Desktop), the choice became clear. 
The software is very easy to use and suitable for the type of design work we do." 
 
As part of the DesignSpace evaluation, which was completed during a free 30-day trial, Mitroflow took 
steps to validate DesignSpace results against known testing responses for existing designs. 
 
"The DesignSpace results were within 10 percent of our actual testing results," Chaplin said. "That's better 
than we expected from the software and good enough to make initial prototype design decisions. We're 
100-percent confident in the software results, and are now using the software as a regular design tool." 
 
Improving the Design Process 

In pursuing the company's design objective of increasing valve longevity, Mitroflow is using 
DesignSpace to examine the flexibility of the valve stent-specifically, deflection in the stent posts. The 
secondary objective of design simplification to make the manufacturing process easier and more cost-
effective is also part of this work. All DesignSpace analyses were done inside Mechanical Desktop on a 
Pentium 120 MHz computer with 64 MB of RAM running Windows 95. 

"We've used DesignSpace to look at different prototypes before choosing the design to pursue," Arntorp 
noted. "DesignSpace allowed us to run different scenarios and make decisions that were necessary for an 
optimized heart valve design." 
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In just a couple months, Mitroflow's project team has finalized designs for two sizes of the next 
pericardial heart valve model. Mitroflow produces six different sizes of valves for each model to 
accommodate the varying heart sizes in human beings. Heart size varies with physical stature and, for the 
most part, coincides with the size of a human fist. In the past, company engineers could spend as long as 
six months on one size of a model. 

 
"Before using DesignSpace, developing a design was really trial and error. We'd have an idea, do some 
rough hand calculations and then go through a prototype testing cycle. With DesignSpace, we have more 
confidence in our initial prototypes," Arntorp said. "DesignSpace will shorten our product development 
life cycles and improve the performance of our products. It already has!" 

 
Like all medical device manufacturers, Mitroflow must meet stringent regulatory testing and approval 
requirements. With heart valves, this approval process takes anywhere from nine months to a couple of 
years, so any time savings that can be realized are extremely important. 

 
DesignSpace provides an additional benefit to Mitroflow in the design and manufacture of products in a 
tightly regulated market. DesignSpace results provide evidence and add credibility to Mitroflow's 
regulatory submissions-another reason why Mitroflow is taking DesignSpace to heart. 

 
 



10    

FEA Information August News archived on the site News Page 
www.feainformation.com  

 
August 05: 

• Fujitsu:  upgrades to its PRIMEPOWERTM family of SolarisTM compatible servers with the global 
introduction of seven enhanced models. 

•  LMS Test.Lab is an integrated software suite for Noise & Vibration Testing and Engineering 
•  Metal Forming Analysis Corp. located in Canada, supplies a full range of services for the sheet 

metal forming analysis industry. 
August 12 

•  AMD Mobile AMD Athlon™ XP Processor Extreme Performance for Windows® XP 
•  CEI EnLiten is a 3D geometry player for viewing, analyzing and manipulating complex 

visualization scenarios 
•  Dynamax, located in Michigan, for LS-DYNA sales, training, support & consulting 

August 19 
•  ANSYS ANSYS/Multiphysics™   integrates the best structural, thermal, CFD, acoustic and low-

/highfrequency electromagnetic simulation capabilities in one software bundle. 
•  ERAB, located in Sweden, LS-DYNA sales, distribution and consulting. 

August 26 
•  MSC.Nastran is a computer aided engineering (CAE) tool for critical engineering computing 

needs to produce safe, reliable, faster and optimized designs. 
•  JRI JMAG STUDIO analysis selectable either in the frequency domain (Finite Element Method) 

or the time domain (Finite Difference Time Domain) depending on the problem. 
•  THEME Engineering, located in Korea for LS-DYNA sales, consulting, training and support 

 
  2002 EVENTS/CONFERENCES 

Oct. 03 - 04  Engin Soft Conference Users Meeting - Italy  

Oct 08  OASYS LS-DYNA Update Meeting - UK  

Oct. 9-11  CAD-FEM Users Meeting - International Congress on FEM Technology, Germany.   

Oct. 10-13  10th Foresight Institute Conf. on Molecular Nanotechnology in Bethesda, MD, USA.  

Oct 24 - 25  Japanese LS-DYNA & JMAG Users Conference at the Hilton Nagoya.  

Oct 28 Korean LS-DYNA Users Conference – THEME Engineering 
Nov. 28 & 29  LMS Conference for Physical and Virtual Prototyping,, Stuttgart, Germany  

Dec 18 - 21   HiPC 2002 will be held in Bangalore, India known as the Silicon Valley of India.  

2003   

Feb 18 Fujutsu LS-DYNA seminar at Makuhari System Laboratory, Makuhari, Japan 

May 19-21 
 

BETECH Detroit, USA - 15th Int’lConference on Boundary Element Technology  

May 22 - 23 4th European LS-DYNA Conference will be held in ULM,  

June 17-20 
 

The Second M.I.T. Conference on Computational Fluid and Solid Mechanics, taking 
place at Massachusetts Institute of Technology Cambridge, MA.,USA   
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FEA Information Inc. Commercial & Educational Participants 

Headquarters Company  
Australia Leading Engineering Analysis Providers www.leapaust.com.au  
Belgium LMS, International www.lmsintl.com  
Canada Metal Forming Analysis Corp. www.mfac.com  
China ANSYS Bejing www.ansys.com (link on international) 
France Dynalis – Cril Technology Simulation www.criltechnology.com 
Germany DYNAmore www.dynamore.de 
Germany CAD-FEM www.cadfem.de 
India GissEta www.gisseta.com  
Italy Altair Engineering srl www.altairtorino.it 
Japan The Japan Research Institute, Ltd www.jri.co.jp  
Japan Fujitsu Ltd. www.fujitsu.com  
Korea THEME Engineering www.lsdyna.co.kr  
Korea Korean Simulation Technologies www.kostech.co.kr  
Russia State Unitary Enterprise - STRELA www.ls-dynarussia.com 
Sweden Engineering Research AB www.erab.se  
Taiwan Flotrend Corporation www.flotrend.com 
UK OASYS, Ltd www.arup.com/dyna 
USA Livermore Software Technology www.lstc.com  
USA Engineering Technology Associates www.eta.com  
USA ANSYS, Inc www.ansys.com  
USA Hewlett Packard www.hp.com  
USA SGI www.sgi.com  
USA MSC.Software www.mscsoftware.com  
USA EASi Engineering www.easiusa.com  
USA DYNAMAX www.dynamax-inc.com  
USA CEI www.ceintl.com  
USA AMD www.amd.com 
USA INTEL www.intel.com 
USA Dr. T. Belytschko Northwestern University 
USA Dr. D. Benson Univ. California – San Diego 
USA Dr. Bhavin V. Mehta Ohio University 
USA Dr. Taylan Altan The Ohio State U – ERC/NSM 
USA Prof. Ala Tabiei University of Cincinnati 
Russia Dr. Alexey I. Borokov St. Petersburg State Tech. University 
Italy Prof. Gennaro Monacelli Prode – Elasis & Univ. of Napoli, Federico II 
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DEVELOPMENT OF A COUPLED FINITE ELEMENT 
AND MESH-FREE METHOD IN LS-DYNA 

 
 
 

Cheng-Tang Wu 1, Mark E. Botkin 2 and Hui-Ping Wang 2 
 

1 Livermore Software Technology Corporation 
7374 Las Positas Road 
Livermore, CA 94550 

ctwu@lstc.com 
 

2 GM R & D Center 
Mail Code 480-106-256 

Vehicle Analysis and Dynamics Lab 
Warren, MI 48090-9055 

mark.e.botkin@gm.com, hui-ping.wang@gm.com  
 
 
 
 
 
Keywords: mesh-free; finite element; integration constraint 
 
Abbreviations:  
RKPM : reproducing kernel particle method 
EFG : element-free Galerkin 
SCNI : stabilized conforming nodal integration 
 
 
 
 
 

ABSTRACT 
 
A coupled finite element and mesh-free method for the solid and structure analysis has been proposed. This method 
is developed to minimize the mesh distortion problems encountered in the finite element analysis and to reduce the 
high CPU cost associated with the mesh-free computation. 
 
To couple the mesh-free method with the LS-DYNA, an interface constraint has been developed. This interface 
constraint is introduced onto the interfaces between finite element and mesh-free zones, and mesh-free and mesh-
free zones. The completeness condition is imposed in the solution approximation to achieve the desired consistency 
across the interfaces. 
 
To satisfy the linear exactness in the mesh-free Galerkin approximation of the Dirichlet boundary value problem, two 
integration constraints have been developed. A local boundary integration scheme has been proposed to satisfy the 
first integration constraint and to eliminate the possible hourglass modes. The interface constraint is further 
extended to the essential boundaries to meet the second integration constraint and to reduce the computation time on 
the imposition of essential boundary conditions. Several examples are solved to evaluate the numerical performance. 
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INTRODUCTION 
 

Structures subjected to severe material distortion commonly exist in survivability, safety and manufacturing related 
applications in the defense, aerospace, and automotive industries. Typical examples in the automotive industry are 
vehicle crashes in frontal and side impact, fuel tanks subjected to impact load, and metal parts manufactured by 
forging or stamping processes. Despite its success in the analysis of geometric and material nonlinear behavior in 
structures and solids, the widely used finite element method exhibits a number of shortcomings in handling design 
problems involving large deformation, high gradients, localization, or moving discontinuities.  These difficulties are 
partially due to the regularity requirement of mesh discretization.  In the industrial community, this becomes one of 
the most challenging tasks in numerical simulations. 
 
In recent years, classes of mesh-free methods have been developed for specific applications [1, 2, 13].  In these 
methods, the domain of interest is discretized by a scattered set of points.  The uniqueness of the mesh-free methods is 
due to the development of new interpolation/shape functions that allow the interpolation of field variables to be 
accomplished at a global level without the usage of meshes.  These methods are ideal for hp-adaptivity, fracture 
problems, multiple-resolution analysis, and large deformation problems. However, most of the mesh-free methods 
consume considerably higher CPU time than the finite element methods.  
 
To resolve this problem, several mixed finite element and mesh-free methods have been proposed [3, 12, 15]. The 
objective is to use the advantages of each method. Belytschko et al. [3] first introduced a transit element that is of the 
size of one finite element and the linear interpolation of mesh-free. Wagner and Liu [16] proposed a corrected 
collection method. Those methods require an extra degree of freedoms for the coupling of the conventional finite 
element method and mesh-free method. Huerta et al. [12] revised Belytschko’s approach and propose a mixed 
hierarchical approximation based on the element-free Galerkin method [2].  
 
In this paper, we present a coupled finite element and mesh-free method in conjunction with the LS-DYNA [11] 
code for explicit dynamic analysis. This paper is organized as follows: In first part, the development of the coupled 
finite element and mesh-free method is described, and the required interface constraints and consistency conditions 
across interfaces are discussed. The second part presents the coupled finite element and mesh-free formulation for 
explicit dynamic analysis. Two integration constraints are developed to satisfy the linear exactness in the mesh-free 
Galerkin approximation of the Dirichlet boundary value problem. Numerical results are presented in the third part to 
demonstrate the effectiveness of this development, followed by conclusions and discussions. 
 
 

A COUPLED FINITE ELEMENT AND MESH-FREE METHOD 
 
To reduce the mesh distortion problems in standard finite element analysis, the mesh-free computation is added into 
the existing finite element based analysis model. The coupling of this mesh-free computation should be 
computationally efficient, with few modification of the original analysis model, and numerically consistent. 
 
In conventional coupling methods, a layer of finite elements is added onto the interface between each finite element 
and mesh-free zone. The shape functions of those interface elements are comprised of the standard finite element and 
conventional mesh-free shape functions with the completeness condition imposed to satisfy the consistency. 
Nevertheless, these methods still require the structured interface elements and their performance are affected by the 
elements regularity.  
 
To avoid the structured interface element requirement, an interface constraint is proposed. The idea of this proposed 
interface constraint is to introduce a strip of finite element ‘nodes’ (instead of using a layer of structured interface 
elements) on the interface between finite element and mesh-free zones, and mesh-free and mesh-free zones as shown 
in Figure 1. These additional nodes are taken to be the same nodes from the finite element based analysis model and 
do not require an extra degree of freedoms. As a result, the computation preserves the mesh-free unstructured 
characteristics, modification effort for the standard finite element based analysis model is minimized, and the 
computation can be efficient. 
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Figure 1. A two-dimensional FEM analysis model with three added mesh-free computation zones: Mesh-free A, B 

and C and four corresponding interfaces. 
 
Derivation of the coupled finite element and mesh-free method is presented in following section. At first, the mesh-
free approximations are constructed based on the framework of moving least-squares interpolation. The element-free 
Galerkin method (EFG) [2] and the reproducing kernel particle method (RKPM) [13] are two representatives of 
moving least-squares approximation. In this study, we formulate the mesh-free approximation by the RKPM. 
According to the proposed idea, the discrete solution approximation at a point x is obtained as 
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where 

FEMΩ  denotes the sub-domain for the finite element computation and 
MeshfreeΩ  is the sub-domain for mesh-free 

computation. 
MeshfreeFEM: ΩΩΩ ∪=  is a bounded domain in dR and MeshfreeFEMInterface ΩΩΓ ∩= :  is the interface 

between the finite element and mesh-free sub-domains or the interface between any two mesh-free sub-domains.
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aw is called the reproducing kernel function, and is usually expressed by a linear combination of n-th order local 

basis functions and a compact support kernel function; [n] denotes the order of basis functions and ‘a’ is the support 
size of the kernel. ]m[

LΦ  is the standard finite element shape function with order of interpolation [m]. NP is the total 

number of mesh-free particles that influence the solution at point x. KP is the total number of the finite element 

nodes per element when point x is located inside the finite element zones. iId  is the coefficient of the 

approximation, and in general is not equivalent to the physical displacement. MP is the total number of the finite 
element nodes on the interface that influence the approximation.  
 
Using the following reproducing conditions [14], one can restore the polynomials to a specific order by requiring the 
zero-th moment [14] to be one, and the higher order moments to be zero. The reproducing condition also refers to 
the completeness condition of an approximation, and is important for the convergence in the Galerkin methods.
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It is important to notice that, in most cases, the order of finite element interpolation [m] is chosen to be the same as 
the reproducing order [n], and the approximation is continuous everywhere in 

MeshfreeΩ . If the reproducing order [n] 

is larger than the finite element interpolation order [m], i.e. n > m, then continuity is preserved only in 

InterfaceMeshfree \ ΓΩ . Thus, discontinuities in the approximation are induced along 
InterfaceΓ . 

  
Satisfaction of the reproducing conditions in Equation (2) leads to the following coupled finite element and mesh-

FEM

Interface

Interface

Meshfree C

Meshfree A

Meshfree B

FEM

Interface

Interface

Meshfree C

Meshfree A

Meshfree B

 



Code Technology 7th International LS-DYNA Users Conference 

12-32 

free solution approximation with the n-th order solution completeness. 
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I

~Ψ  is the reproducing kernel function corresponding to the mesh-free node I, and ]m[
JΦ  is the standard finite 

element shape function associated with the finite element node J. IΨ̂  is the modified coupled finite element and 

mesh-free shape function for the node I. 
 
It has been shown by Wu [18] that for Equation (1) to be conforming across any interface, a necessary condition is 
required which is 
 

               0)(
~

I =xΨ  for all nodes { }0ΓΨ ≠∩ InterfaceI )supp(:I  and 
InterfaceΓ∈x              (5) 

 
We call Equation (5) the interface constraint.  In other words, the shape functions on the interface between the finite 
element and mesh-free zones are reduced to standard finite element shape functions and pose the Kronecker delta 
property. Therefore, there is no non-conforming problem for the shape functions across the interface.   
 
When InterfaceMeshfree \ ΓΩ∈x , and n = m in Equation (2), the solution approximation will still meet the mth-order 

reproducing conditions. 
 
 

FORMULATION FOR EXPLICIT DYNAMIC ANALYSIS 
 
In this section, solution of the governing equations using the proposed coupled finite element and mesh-free 
approximation is achieved under the framework of the Galerkin weighted residual method. To satisfy the linear 
exactness in the Galerkin approximation, two integration constraints are introduced. A new mesh-free approximation 
is developed based on these two integration constraints, and a spatial integration scheme is introduced for the domain 
integration. 
 
Recall the Lagrangian partial differential equation of motion  
 

          MeshfreeFEM, ΩΩΩΩρ ∪=⋅∇=     f-σu b in  &&                 (6) 

 

with the divergence operator ∇ , the body force bf , and the essential and natural boundary conditions  
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and with initial conditions 
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The left side of Equation (6) is the material time derivative and will involve convective terms if the Eulerian kernel 
functions are used. To avoid the tensile instability caused by the Eulerian kernel functions [4], the Lagrangian kernel 
functions are implemented in this study.  
 
To solve this set of partial differential equations with the Galerkin method (which is considered as standard for the 
development in the finite elements based on the displacement method), the equilibrium in its strong form of 
Equations (6)-(8) is weighted with some test functions defined by }on),(L/{ g

2 ΓΩ   0  wwwW =∈= . The 

corresponding weak form of Equation (6)-(8) becomes: 
 

    ΓΩΩρ
ΓΩΩΩ

d ddd
hxxx

 hw fw -Ωσwuw b ∫∫∫∫ ⋅−⋅⋅∇⋅=⋅ &&             (9) 

 
with 
 

  
)(0)(

  )(0)(

XuX,u

XuX,u
0

0

&& =
=                                  (10) 

 

The next step in the discretization is to choose a finite dimensional subspace UU h ⊂ with basis )n1(ˆ K=IIΨ . 

)n1(ˆ K=IIΨ  are the shape functions obtained from Equation (1). To this end, the basis of weighted functions is 

chosen to be the same as the trial functions after the spatial discretization. Since we choose the weighted functions to 
be in )( Ω1

0H , we can integrate by parts and obtain the discrete Galerkin weighted residual formulation. The 

references for the detailed derivation of weak equations and the imposition of essential boundary conditions using 
kinematically admissible mesh-free shape functions can be found in [5-7, 17]. Following the derivation for explicit 
time integration, the equations to be solved have the form 
 
  

intˆˆˆ RAuuMAAu -TT-1-TT δδ =&&                                                          (11) 
 
where 
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XXxx

u &&&&&&

             (12) 

 
and 
 

( )IJIJ XˆA;ˆ Ψ== Auu                                                                (13) 

 
Usually, the numerical integration in Equation (11) is evaluated by Gauss quadrature using the so-called background 
mesh. However, the Gauss integration method fails to satisfy the linear exactness in the mesh-free Galerkin 
approximation of a second-order partial differential equation. Moreover, a higher order quadrature rule is often 
required for better accuracy, and this is one of the major causes of high CPU consumption in mesh-free methods. For 
convergence reasons, an integration constraint is required as a necessary condition for the linear exactness in the 
mesh-free Galerkin approximation of Dirichlet boundary value problems [9, 10]. Here, we call this the first 
integration constraint and it is given by 
 

0 B =∫Ω ΩdT
I

for all interior nodes { }0)
~

supp( boundary =∩ ΓΨ:I I
                         (14) 

 
or in the discrete form, 
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0 x =∇∑
=

J
1J

JI A)(Ψ̂  for all interior nodes { }0)
~

supp( boundary =∩ ΓΨ:I I                (15) 

 
where IB is the gradient matrix; JA is the weight of the domain integration point.  

 
To meet this integration constraint, a stabilized conforming nodal integration method (SCNI) [9, 10] has been 
proposed. This method was originally designed as a strain smoothing stabilization in the strain localization analysis 
[8]. The method was further extended to minimize the integration errors and improve the computation inefficiency in 
the conventional mesh-free higher-order Gauss integration method. 
 
From our numerical studies we observed that SCNI fails to satisfy the linear exactness in the cases when the supports 
of inner nodes cover the essential boundary nodes. In other words, the solution fails to display a linear displacement 
field in the Galerkin approximation of Dirichlet boundary value problem if { } { }0)supp(  for g ≠∩∃ ΓΨ:Ix II

. 

Therefore the satisfaction of first integration constraint is said to have passed a ‘weak’ linear exactness test.  Wu 
[18] has further proved that for the mesh-free solution to satisfy the linear exactness test, an additional integration 
constraint is required.  
 

∑
=

∈∈∀=
1M

gMeshfreeMgNNM \)(ˆ ΓΩΓΨ x    x 0    xx N and                                    (16) 

 
We call Equation (16) the second integration constraint. It can be proved that the conventional mesh-free shape 
function and the coupled shape function 

IΨ̂  in Equation (3) do not meet this requirement and therefore fails to satisfy 

the linear exactness in the mesh-free Galerkin approximation of Dirichlet boundary value problem. Moreover, the 
calculation of Equation (11) and the generalized displacement in Equation (13) by the conventional mesh-free 
approximation requires additional efforts for the matrix multiplication during each time step. Therefore, much higher 
computation time is expected in the implicit calculation. This is another major cause of high CPU usage for the 
mesh-free method. 
 
To resolve the problem in the violation of the second integration constraint, and to improve the inefficiency in the 
calculation of Equations (11) and (13), the interface constraint concept is extended to the imposition of essential 
boundary conditions and contact conditions. By further extending similar constraint from interface to boundary, the 
solution approximation in the mesh-free zone is modified as 
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      (17) 

 
It has been proven [18] that this new solution approximation satisfies the second integration constraint. 
 
Another major shortcoming of the SCNI method is its inability to couple the mesh-free method with the finite 
element method. This is because the SCNI method is a nodal integration method, and all the quantities are computed 
and assigned to the nodes. As a result, internal variables such as strains and stresses evaluated at the interface nodes 
between finite element and mesh-free zones, and mesh-free and mesh-free zones are inconsistent. Moreover, from 
our numerical studies, it is also shown that the SCNI method displays hourglass modes when the support size is small 
or a high order basis function is adopted in the analysis.  
 
In order to avoid the undefined nodal quantities on the interface and also to eliminate possible hourglass modes 
observed in the SCNI method, a modified local boundary integration method is introduced in this research for the 
domain integration. This method is equivalent to the two points Gauss integration with local boundary integration 
performed on each gauss point. For a more detailed derivation on the modified local boundary integration method 
see Wu [18]. 

 
To introduce the strain smoothing formulation into the Galerkin approximation, the mixed variational principle based 
on an assumed strain method is considered [9, 10]. Substituting the displacement and smoothed strain 
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approximations into Equation (11) and performing the local boundary integration method [18], the discrete system 
equation becomes 

 

)uˆ( h
i∇−= intext ffuM &&                                                                (18) 

 
In the explicit dynamic analysis, a lumped mass matrix is considered for the computation efficiency. In this study, a 
row-sum method is used for the construction of the lumped mass matrix. Recall the consistent mass matrix in 
Equation (12), and perform the row-sum method, the diagonalized mass vector is given as 
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The discrete form of int

If  in Equation (18) is  
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where TG is the transform matrix of the inverse of the smoothed deformation gradient for the usage of Lagrangian 
kernel function. For example, in a two-dimensional problem 
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NUMERICAL EXAMPLES 

 
Helmholtz Equation 
 
To evaluate the performance of the proposed method, the Helmholtz equation is solved. In general, the Helmholtz 
equation considers the wave equation for cases where all data are simple-harmonic. The Helmholtz equation admits 
the family of localized asymptotic solutions, which are globally free of singularities, and usually provides an 
effective tool to study the integration representation of high frequency wave fields.  
  
In this research, we consider the following one-dimensional Helmholtz equation with dimensionless unit given by  
 

{ }2.5x0x  on,0)x(uk)x(u 22 ≤≤==+∇  |  Ω     (22) 

 
with Dirichlet boundary conditions. 
 

0)5.2(u,1)0(u ==                                  (23) 

 
where 2∇ is the Laplacian, k is the wave number. For imaginary k, the equation becomes the spatial part of the 
diffusion equation. For real k, the solution of Helmholtz equation represents the spatial part of the wave equation. 
When k is zero, the equation reduces to the Laplace equation. 
 
In this example, twelve uniformly distributed particles with the wave number equal to one and three are studied 
respectively. The particle number is chosen such that the discretization is close to the Nyquist limit and waves are 
allowed to propagate. The effect of the mesh-free approximation order is also considered. For the basis function 
order of one, normalized kernel function support of 1.5 is used; for the basis function order of two, normalized 
support of 2.5 is used. Comparisons between the consistent mass and lumped mass formulations are made.  
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When the wave number is one, the displacements obtained from the consistent mass and lumped mass formulations 
match the analytical solution very well for two different approximation orders as shown in Figure 2. The square 
symbol denotes the results with the consistent mass formulation, the triangular symbol represents the results with the 
lumped mass formulation, and the solid line is the analytical solution. 
 

 

 
 (a) basis function order is one                                          (b) basis function order is two. 

  
Figure 2. Displacement comparisons between consistent mass and lumped mass when the wave number is equal to 

one  
 

Figure 3 shows, for higher wave number (k = 3) with approximation order equal to one, the consistent mass 
formulation still provides good performance whereas the solution obtained from the lumped mass loses some 
accuracy. By adding more particles, the discretization error in the lumped mass method could be minimized. 
Alternatively, the accuracy could also be improved by using higher order basis functions as shown in Figure 3 (b). 

 
 

     (a) basis function order is one                                             (b) basis function order is two 
 

Figure 3. Displacement comparisons between consistent mass and lumped mass when the wave number is equal to 
three  

 
Frictional Forging 
 
This problem is studied to identify the applicability of the coupled finite element and mesh-free method to path-
dependent materials with frictional contact conditions. A metal work piece compressed by a cylindrical punch as 
described in Figure 4 is analyzed. The plane-strain condition is considered. The punch is treated as a rigid body, and 
only the work piece is considered to be deformable. The material properties of the work piece are: initial density = 
10E-3 42 in/slbf ⋅ , Young’s modulus = 6.825E7 psi, Poisson’s ratio = 0.3, and J2 perfect plasticity with yield stress 

= 6000.0 psi. The friction coefficient between the work piece and punch is assumed to be 0.2. The velocity for the 
punch is 0.01 in/s. One mesh-free zone and the corresponding interface are added into the finite element based 
analysis model. Conventional finite element analysis is also conducted for comparison. 
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The analysis by the finite element method fails when severe mesh distortion occurs near the corner of the cylindrical 
punch as shown in Figure 4. The corresponding effective plastic strain is plotted in Figure 5. It is shown that finite 
element analysis displays a high level of effective plastic strains due to the tangled elements. As a result, a high level 
of stress concentration is expected in the conventional finite element analysis. On the other hand, the coupled finite 
element and mesh-free method effectively avoids the mesh tangling and provides smooth strain and stress 
distribution as shown in Figure 4 and 5.  The progressive deformation obtained from the coupled finite element and 
mesh-free method is illustrated in Figure 6. 
 

 
Figure 4. Comparison of deformed shapes.  

 

FEM LS-DYNA 970FEM LS-DYNA 970FEM LS-DYNA 970

 
Figure 5. Comparison of effective plastic strain distribution. 

 
 

FEM LS-DYNA970FEM LS-DYNA970
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Figure 6. Progressive deformation by LS-DYNA 970. 

 
 

CONCLUSION 
 

To efficiently assess structural survivability, reusability and manufacturing for the industrial applications using 
simulation technology, a coupled finite element and mesh-free computational method is proposed for effective and 
realistic simulation of severe material deformation in structures.  
 
To couple the mesh-free method with LS-DYNA, an interface constraint has been developed. To satisfy the linear 
exactness in the mesh-free Galerkin approximation of the Dirichlet boundary value problem, two integration 
constraints have been developed. A local boundary integration scheme with the coupled finite element and mesh-free 
shape function has been developed to satisfy the two integration constraints, to eliminate the possible hourglass 
modes and to reduce the computation time on the imposition of essential boundary conditions. 
 
This method has been shown to perform well for explicit dynamics problems. The extension of this method to 
implicit analysis and shell formulation is under investigation. 
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