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ABSTRACT

LS-DYNA is a general purpose finite element code for analyzing the large deformation
static and dynamic response of structures including structures coupled to fluids. The main
solution methodology is based on explicit time integration. An implicit solver is currently
available with somewhat limited capabilities including structural analysis and heat transfer. A
contact-impact algorithm allows difficult contact problems to be easily treated with heat transfer
included across the contact interfaces. By a specialization of this algorithm, such interfaces can
be rigidly tied to admit variable zoning without the need of mesh transition regions. Other
specializations, allow draw beads in metal stamping applications to be easily modeled simply by
defining a line of nodes along the draw bead. Spatial discretization is achieved by the use of four
node tetrahedron and eight node solid elements, two node beam elements, three and four node
shell elements, eight node solid shell elements, truss elements, membrane elements, discrete
elements, and rigid bodies. A variety of element formulations are available for each element
type. Specialized capabilities for airbags, sensors, and seatbelts have tailored LS-DYNA for
applications in the automotive industry. Adaptive remeshing is available for shell elements and
is widely used in sheet metal stamping applications. LS-DYNA currently contains approximately
one-hundred constitutive models and ten equations-of-state to cover a wide range of material
behavior.

This theoretical manual has been written to provide users and potential users with insight
into the mathematical and physical basis of the code.

1. INTRODUCTION

1.1 History of LSS DYNA

The origin of LS-DYNA dates back to the public domain software, DYNA3D, which was
developed in the mid-seventies at the Lawrence Livermore National Laboratory.

The first version of DYNA3D [Hallquist 1976a] was released in 1976 with constant stress
4- or 8-node solid elements, 16- and 20-node solid elements with 2 x 2 x 2 Gaussian quadrature,
3, 4, and 8-node membrane elements, and a 2-node cable element. A nodal constraint contact-
impact interface algorithm [Hallquist 1977] was available. On the Control Data CDC-7600, a

supercomputer in 1976, the speed of the code varied from 36 minutes per 106 mesh cycles with

4-8 node solids to 180 minutes per 106 mesh cycles with 16 and 20 node solids. Without
hourglass control to prevent formation of non-physical zero energy deformation modes, constant

stress solids were processed at 12 minutes per 106 mesh cycles. A moderate number of very
costly solutions were obtained with this version of DYNA3D using 16- and 20-node solids.
Hourglass modes combined with the procedure for computing the time step size prevented us
from obtaining solutions with constant stress elements.

In this early development, several things became apparent. Hourglass deformation modes
of the constant stress elements were invariably excited by the contact-impact algorithm, showing
that a new sliding interface algorithm was needed. Higher order elements seemed to be
impractical for shock wave propagation because of numerical noise resulting from the ad hoc
mass lumping necessary to generate a diagonal mass matrix. Although the lower frequency
structural response was accurately computed with these elements, their high computer cost made
analysis so expensive as to be impractical. It was obvious that realistic three-dimensional
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structural calculations were possible, if and only if the under-integrated eight node constant stress
solid element could be made to function. This implied a need for a much better sliding interface
algorithm, a more cost-effective hourglass control, more optimal programming, and a machine
much faster than the CDC-7600. This latter need was fulfilled several years later when LLNL
took deliver of its first CRAY-1. At this time, DYNA3D was completely rewritten.

The next version, released in 1979, achieved the aforementioned goals. On the CRAY
the vectorized speed was 50 times faster, 0.67 minutes per million mesh cycles. A symmetric,
penalty-based, contact-impact algorithm was considerably faster in execution speed and
exceedingly reliable. Due to lack of use, the membrane and cable elements were stripped and all
higher order elements were eliminated as well. Wilkins’ finite difference equations [Wilkins et
al. 1974] were implemented in unvectorized form in an overlay to compare their performance
with the finite element method. The finite difference algorithm proved to be nearly two times
more expensive than the finite element approach (apart from vectorization) with no
compensating increase in accuracy, and was removed in the next code update.

The 1981 version [Hallquist 1981a] evolved from the 1979 version. Nine additional
material models were added to allow a much broader range of problems to be modeled including
explosive-structure and soil-structure interactions. Body force loads were implemented for
angular velocities and base accelerations. A link was also established from the 3D Eulerian code
JOY [Couch, et. al., 1983] for studying the structural response to impacts by penetrating
projectiles. An option was provided for storing element data on disk thereby doubling the
capacity of DYNA3D.

The 1982 version of DYNA3D [Hallquist 1982] accepted DYNA2D [Hallquist 1980]
material input directly. The new organization was such that equations of state and constitutive
models of any complexity could be easily added. Complete vectorization of the material models
had been nearly achieved with about a 10 percent increase in execution speed over the 1981
version.

In the 1986 version of DYNA3D [Hallquist and Benson 1986], many new features were
added, including beams, shells, rigid bodies, single surface contact, interface friction, discrete
springs and dampers, optional hourglass treatments, optional exact volume integration, and
VAX/VMS, IBM, UNIX, COS operating systems compatibility, that greatly expanded its range
of applications. DYNAS3D thus became the first code to have a general single surface contact
algorithm.

In the 1987 version of DYNAS3D [Hallquist and Benson 1987] metal forming simulations
and composite analysis became a reality. This version included shell thickness changes, the
Belytschko-Tsay shell element [Belytschko and Tsay, 1981], and dynamic relaxation. Also
included were non-reflecting boundaries, user specified integration rules for shell and beam
elements, a layered composite damage model, and single point constraints.

New capabilities added in the 1988 DYNA3D [Hallquist 1988] version included a cost

effective resultant beam element, a truss element, a C9 triangular shell, the BCIZ triangular shell
[Bazeley et al., 1965], mixing of element formulations in calculations, composite failure
modeling for solids, noniterative plane stress plasticity, contact surfaces with spot welds, tiebreak
sliding surfaces, beam surface contact, finite stonewalls, stonewall reaction forces, energy
calculations for all elements, a crushable foam constitutive model, comment cards in the input,
and one-dimensional slidelines.

In 1988 the Hallquist began working half-time at LLNL to devote more time to the
development and support of LS-DYNA for automotive applications. By the end of 1988 it was
obvious that a much more concentrated effort would be required in the development of
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LS-DYNA if problems in crashworthiness were to be properly solved; therefore, at the start of
1989 the Hallquist resigned from LLNL to continue code development full time at Livermore
Software Technology Corporation. The 1989 version introduced many enhanced capabilities
including a one-way treatment of slide surfaces with voids and friction; cross-sectional forces for
structural elements; an optional user specified minimum time step size for shell elements using
elastic and elastoplastic material models; nodal accelerations in the time history database; a
compressible Mooney-Rivlin material model; a closed-form update shell plasticity model; a
general rubber material model; unique penalty specifications for each slide surface; external work
tracking; optional time step criterion for 4-node shell elements; and internal element sorting to
allow full vectorization of right-hand-side force assembly.

Throughout the past decade, considerable progress has been made as may be seen in the
chronology of the developments which follows. During 1989 many extensions and
developments were completed, and in 1990 the following capabilities were delivered to users:

» arbitrary node and element numbers,

» fabric model for seat belts and airbags,

» composite glass model,

» vectorized type 3 contact and single surface contact,

* many more 1/O options,

» all shell materials available for 8 node brick shell,

» strain rate dependent plasticity for beams,

» fully vectorized iterative plasticity,

* interactive graphics on some computers,

* nodal damping,

» shell thickness taken into account in shell type 3 contact,

» shell thinning accounted for in type 3 and type 4 contact,

» soft stonewalls,

* print suppression option for node and element data,

* massless truss elements, rivets — based on equations of rigid body dynamics,

* massless beam elements, spot welds — based on equations of rigid body dynamics,

» expanded databases with more history variables and integration points,

» force limited resultant beam,

 rotational spring and dampers, local coordinate systems for discrete elements,

« resultant plasticity for CO triangular element,

» energy dissipation calculations for stonewalls,

» hourglass energy calculations for solid and shell elements,

» viscous and Coulomb friction with arbitrary variation over surface,

 distributed loads on beam elements,

e Cowper and Symonds strain rate model,

» segmented stonewalls,

» stonewall Coulomb friction,

» stonewall energy dissipation,

» airbags (1990),

* nodal rigid bodies,

 automatic sorting of triangular shells into CO groups,

* mass scaling for quasi static analyses,

» user defined subroutines,

» warpage checks on shell elements,
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» thickness consideration in all contact types,

* automatic orientation of contact segments,

» sliding interface energy dissipation calculations,

» nodal force and energy database for applied boundary conditions,
» defined stonewall velocity with input energy calculations,

Options added in 1991-1992:
* rigid/deformable material switching,
* rigid bodies impacting rigid walls,
 strain-rate effects in metallic honeycomb model 26,
» shells and beams interfaces included for subsequent component analyses,
» external work computed for prescribed displacement/velocity/accelerations,
 linear constraint equations,
* MPGS database,
* MOVIE database,
» Slideline interface file,
* automated contact input for all input types,
» automatic single surface contact without element orientation,
» constraint technique for contact,
» cut planes for resultant forces,
» crushable cellular foams,
» urethane foam model with hysteresis,
» subcycling,
» friction in the contact entities,
» strains computed and written for the 8 node thick shells,
* *good” 4 node tetrahedron solid element with nodal rotations,
» 8 node solid element with nodal rotations,
* 2 X2 integration for the membrane element,
» Belytschko-Schwer integrated beam,
» thin-walled Belytschko-Schwer integrated beam,
* improved LS-DYNA database control,
» null material for beams to display springs and seatbelts in TAURUS,
» parallel implementation on Crays and SGI computers,
» coupling to rigid body codes,
» seat belt capability.

Options added in 1993-1994:
» Arbitrary Lagrangian Eulerian brick elements,
» Belytschko-Wong-Chiang quadrilateral shell element,
» Warping stiffness in the Belytschko-Tsay shell element,
» Fast Hughes-Liu shell element,
» Fully integrated brick shell element,
» Discrete 3D beam element,
» Generalized dampers,
» Cable modeling,
» Airbag reference geometry,
* Multiple jet model,
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* Generalized joint stiffnesses,

* Enhanced rigid body to rigid body contact,

* Orthotropic rigid walls,

» Time zero mass scaling,

» Coupling with USA (Underwater Shock Analysis),

» Layered spot welds with failure based on resultants or plastic strain,
» Fillet welds with failure,

» Butt welds with failure,

» Automatic eroding contact,

» Edge-to-edge contact,

» Automatic mesh generation with contact entities,

* Drawbead modeling,

» Shells constrained inside brick elements,

* NIKE3D coupling for springback,

» Barlat’s anisotropic plasticity,

» Superplastic forming option,

* Rigid body stoppers,

» Keyword input,

* Adaptivity,

» First MPP (Massively Parallel) version with limited capabilities.
» Built in least squares fit for rubber model constitutive constants,
» Large hystersis in hyperelastic foam,

» Bilhku/Dubois foam model,

» Generalized rubber model,

New options added to version 936 in 1995 include:
* Belytschko - Leviathan Shell
» Automatic switching between rigid and deformable bodies.
» Accuracy on SMP machines to give identical answers on one, two or more processors.
» Local coordinate systems for cross-section output can now be specified.
* Null material for shell elements.
* Global body force loads now may be applied to a subset of materials.
» User defined loading subroutine.
» Improved interactive graphics.
* New initial velocity options for specifying rotational velocities.
» Geometry changes after dynamic relaxation can be considered for initial velocities.
» Velocities may also be specified by using material or part ID’s.
» Improved speed of brick element hourglass force and energy calculations.
» Pressure outflow boundary conditions have been added for the ALE options.
» More user control for hourglass control constants for shell elements.
» Full vectorization in constitutive models for foam, models 57 and 63.
» Damage mechanics plasticity model, material 81,
* General linear viscoelasticity with 6 term prony series.
» Least squares fit for viscoelastic material constants.
» Table definitions for strain rate effects in material type 24.
» Improved treatment of free flying nodes after element failure.
» Automatic projection of nodes in CONTACT_TIED to eliminate gaps in the surface.
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* More user control over contact defaults.

» Improved interpenetration warnings printed in automatic contact.

» Flag for using actual shell thickness in single surface contact logic rather than the
default.

» Definition by exempted part ID’s.

» Airbag to Airbag venting/segmented airbags are now supported.

» Airbag reference geometry speed improvements by using the reference geometry for
the time step size calculation.

» Isotropic airbag material may now be directly for cost efficiency.

» Airbag fabric material damping is now specified as the ratio of critical damping.

» Ability to attach jets to the structure so the airbag, jets, and structure to move
together.

* PVM 5.1 Madymo coupling is available.

* Meshes are generated within LS-DYNAS3D for all standard contact entities.

» Joint damping for translational motion.

* Angular displacements, rates of displacements, damping forces, etc. in INTFORC
file.

» Link between LS-NIKE3D to LS-DYNAZ3D via *INITIAL_STRESS keywords.

* Trim curves for metal forming springback.

» Sparse equation solver for springback.

* Improved mesh generation for IGES and VDA provides a mesh that can directly be
used to model tooling in metal stamping analyses.

New options added to Version 940 in 1996 and 1997:
» Part/Material ID’s may be specified with 8 digits.
» Rigid body motion can be prescribed in a local system fixed to the rigid body.
» Nonlinear least squares fit available for the Ogden rubber model.
» Lease squares fit to the relaxation curves for the viscoelasticity in rubber.
» Fu-Chang rate sensitive foam.
* 6 term Prony series expansion for rate effects in model 57-now 73
* Viscoelastic material model 76 implemented for shell elements.
* Mechanical threshold stress (MTS) plasticity model for rate effects.
» Thermoelastic-plastic material model for Hughes-Liu beam element.
* Ramberg-Osgood soil model
* Invariant local coordinate systems for shell elements are optional.
» Second order accurate stress updates.
» Four-noded, linear, tetrahedron element.
» Co-rotational solid element for foam that can invert without stability problems.
* Improved speed in rigid body to rigid body contacts.
» Improved searching for the a_3, a_5 and al10 contact types.
* Invariant results on shared memory parallel machines with the a_n contact types.
» Thickness offsets in type 8 and 9 tie break contact algorithms.
» Bucket sort frequency can be controlled by a load curve for airbag applications.
* Inautomatic contact each part ID in the definition may have unique:
-Static coefficient of friction
-Dynamic coefficient of friction
-Exponential decay coefficient

1.6



LS-DYNA Theory Manual Introduction

-Viscous friction coefficient
-Optional contact thickness
-Optional thickness scale factor
-Local penalty scale factor

* Automatic beam-to-beam, shell edge-to-beam, shell edge-to-shell edge and single
surface contact algorithm.

* Release criteria may be a multiple of the shell thickness in types a_3, a_5, al0, 13,
and 26 contact.

» Force transducers to obtain reaction forces in automatic contact definitions. Defined
manually via segments, or automatically via part ID’s.

» Searching depth can be defined as a function of time.

* Bucket sort frequency can be defined as a function of time.

* Interior contact for solid (foam) elements to prevent "negative volumes."”

» Locking joint

» Temperature dependent heat capacity added to Wang-Nefske inflator models.

* Wang Hybrid inflator model [Wang, 1996] with jetting options and bag-to-bag
venting.

» Aspiration included in Wang’s hybrid model [Nucholtz, Wang, Wylie, 1996].

» Extended Wang’s hybrid inflator with a quadratic temperature variation for heat
capacities [Nusholtz, 1996].

» Fabric porosity added as part of the airbag constitutive model.

» Blockage of vent holes and fabric in contact with structure or itself considered in
venting with leakage of gas.

» Option to delay airbag liner with using the reference geometry until the reference area
IS reached.

» Birth time for the reference geometry.

* Multi-material Euler/ALE fluids,
-2nd order accurate formulations.
-Automatic coupling to shell, brick, or beam elements
-Coupling using LS-DYNA contact options.
-Element with fluid + void and void material
-Element with multi-materials and pressure equilibrium

» Nodal inertia tensors.

» 2D plane stress, plane strain, rigid, and axisymmetric elements

» 2D plane strain shell element

» 2D axisymmetric shell element.

» Full contact support in 2D, tied, sliding only, penalty and constraint techniques.

* Most material types supported for 2D elements.

* Interactive remeshing and graphics options available for 2D.

» Subsystem definitions for energy and momentum output.

and many more enhancements not mentioned above.

Capabilities added during 1997-1998 in Version 950 include:
» Adaptive refinement can be based on tooling curvature with FORMING contact.
» The display of draw beads is now possible since the draw bead data is output into the
D3PLOT database.
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* An adaptive box option, *DEFINE_BOX_ADAPTIVE, allows control over the
refinement level and location of elements to be adapted.
* A root identification file, ADAPT.RID, gives the parent element ID for adapted
elements.
» Draw bead box option, *DEFINE_BOX_DRAWBEAD, simplifies draw bead input.
» The new control option, CONTROL_IMPLICIT, activates an implicit solution
scheme.
» 2D Arbitrary-Lagrangian-Eulerian elements.
» 2D automatic contact is defined by listing part ID's.
» 2D r-adaptivity for plane strain and axisymmetric forging simulations is available.
» 2D automatic non-interactive rezoning as in LS-DYNAZ2D.
» 2D plane strain and axisymmetric element with 2x2 selective-reduced integration are
implemented.
» Implicit 2D solid and plane strain elements are available.
» Implicit 2D contact is available.
* The new keyword, *DELETE_CONTACT_2DAUTO, allows the deletion of 2D
automatic contact definitions.
* The keyword, *LOAD_BEAM is added for pressure boundary conditions on 2D
elements.
» A viscoplastic strain rate option is available for materials:
*MAT_PLASTIC_KINEMATIC
*MAT_JOHNSON_COOK
*MAT_POWER_LAW_PLASTICITY
*MAT_STRAIN_RATE_DEPENDENT_PLASTICITY
*MAT_PIECEWISE_LINEAR_PLASTICITY
*MAT_RATE_SENSITIVE_POWERLAW_PLASTICITY
*MAT_ZERILLI-ARMSTRONG
*MAT_PLASTICITY_WITH_DAMAGE
*MAT_PLASTICITY_COMPRESSION_TENSION
* Material model, *MAT_PLASTICITY_WITH_DAMAGE, has a piecewise linear
damage curve given by a load curve ID.
» The Arruda-Boyce hyper-viscoelastic rubber model is available, see *MAT_
ARRUDA_BOYCE.
» Transverse-anisotropic-viscoelastic material for heart tissue, see *MAT_HEART _
TISSUE.
* Lung hyper-viscoelastic material, see *MAT_LUNG_TISSUE.
» Compression/tension plasticity model, see *MAT_PLASTICITY_COMPRESSION_
TENSION.
* The Lund strain rate model, *MAT_STEINBERG_LUND, is added to Steinberg-
Guinan plasticity model.
» Rate sensitive foam model, *MAT_FU_CHANG_FOAM, has been extended to
include engineering strain rates, etc.
* Model, *MAT_MODIFIED_PIECEWISE_LINEAR_PLASTICITY, is added for
modeling the failure of aluminum.
* Material model, *MAT_SPECIAL_ ORTHOTROPIC, added for television shadow
mask problems.
» Erosion strain is implemented for material type, *MAT_BAMMAN_DAMAGE.
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* The equation of state, *EOS_JWLB, is available for modeling the expansion of
explosive gases.

» The reference geometry option is extended for foam and rubber materials and can be
used for stress initialization, see *INITIAL_FOAM_REFERENCE_GEOMETRY.

* A vehicle positioning option is available for setting the initial orientation and
velocities, see *INITIAL_VEHICLE_KINEMATICS.

* A boundary element method is available for incompressible fluid dynamics problems.

» The thermal materials work with instantaneous coefficients of thermal expansion:
*MAT_ELASTIC_PLASTIC_THERMAL
*MAT_ORTHOTROPIC_THERMAL
*MAT_TEMPERATURE_DEPENDENT_ORTHOTROPIC
*MAT_ELASTIC_WITH_VISCOSITY.

» Airbag interaction flow rate versus pressure differences.

» Contact segment search option, [bricks first optional]

» A through thickness Gauss integration rule with 1-10 points is available for shell
elements. Previously, 5 were available.

» Shell element formulations can be changed in a full deck restart.

* The tied interface which is based on constraint equations, TIED _SURFACE_TO _
SURFACE, can now fail if _FAILURE, is appended.

» A general failure criteria for solid elements is independent of the material type, see
*MAT_ADD_EROSION

» Load curve control can be based on thinning and a flow limit diagram, see *DEFINE _
CURVE_FEEDBACK.

» An option to filter the spotweld resultant forces prior to checking for failure has been
added the option, *CONSTRAINED_SPOTWELD, by appending, _FILTERED _
FORCE, to the keyword.

» Bulk viscosity is available for shell types 1, 2, 10, and 16.

* When defining the local coordinate system for the rigid body inertia tensor a local
coordinate system ID can be used. This simplifies dummy positioning.

» Prescribing displacements, velocities, and accelerations is now possible for rigid body
nodes.

» One-way flow is optional for segmented airbag interactions.

» Pressure time history input for airbag type, LINEAR_FLUID, can be used.

» An option is available to independently scale system damping by part ID in each of
the global directions.

* An option is available to independently scale global system damping in each of the
global directions.

» Added option to constrain global DOF along lines parallel with the global axes. The
keyword is *CONSTRAINED_GLOBAL. This option is useful for adaptive
remeshing.

» Beam end code releases are available, see *ELEMENT_BEAM.

* An initial force can be directly defined for the cable material, *MAT_CABLE_
DISCRETE_BEAM. The specification of slack is not required if this option is used.

» Airbag pop pressure can be activated by accelerometers.

» Termination may now be controlled by contact, via *TERMINATION_CONTACT.
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Modified shell elements types 8, 10 and the warping stiffness option in the
Belytschko-Tsay shell to ensure orthogonality with rigid body motions in the event
that the shell is badly warped. This is optional in the Belytschko-Tsay shell and the
type 10 shell.

A one point quadrature brick element with an exact hourglass stiffness matrix has
been implemented for implicit and explicit calculations.

Automatic file length determination for D3PLOT binary database is now
implemented. This insures that at least a single state is contained in each D3PLOT
file and eliminates the problem with the states being split between files.

The dump files, which can be very large, can be placed in another directory by
specifying d=/home/user /test/d3dump on the execution line.

A print flag controls the output of data into the MATSUM and RBDOUT files by part
ID's. The option, PRINT, has been added as an option to the *PART keyword.

Flag has been added to delete material data from the D3THDT file. See
*DATABASE_ EXTENT_BINARY and column 25 of the 19th control card in the
structured input.

After dynamic relaxation completes, a file is written giving the displaced state which
can be used for stress initialization in later runs.

Capabilities added during 1998-2000 in Version 960. Most new capabilities work on
both the MPP and SMP versions; however, the capabilities that are implemented for the SMP
version only, which were not considered critical for this release, are flagged below. These SMP
unique capabilities are being extended for MPP calculations and will be available in the near

future.

The implicit capabilities for MPP require the development of a scalable eigenvalue

solver, which is under development for a later release of LS-DYNA.

Incompressible flow solver is available. Structural coupling is not yet implemented.
Adaptive mesh coarsening can be done before the implicit spring back calculation in
metal forming applications.

Two-dimensional adaptivity can be activated in both implicit and explicit
calculations. (SMP version only)

An internally generated smooth load curve for metal forming tool motion can be
activated with the keyword: *DEFINE_CURVE_SMOOTH.

Torsional forces can be carried through the deformable spot welds by using the
contact type: *CONTACT_SPOTWELD_WITH_TORSION (SMP version only with
a high priority for the MPP version if this option proves to be stable.)

Tie break automatic contact is now available via the *CONTACT_AUTOMATIC ...
TIEBREAK options. This option can be used for glued panels. (SMP only)
*CONTACT_RIGID_SURFACE option is now available for modeling road surfaces
(SMP version only).

Fixed rigid walls PLANAR and PLANAR_FINITE are represented in the binary
output file by a single shell element.

Interference fits can be modeled with the INTERFERENCE option in contact.

A layered shell theory is implemented for several constitutive models including the
composite models to more accurately represent the shear stiffness of laminated shells.
Damage mechanics is available to smooth the post-failure reduction of the resultant
forces in the constitutive model *MAT_SPOTWELD_DAMAGE.
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» Finite elastic strain isotropic plasticity model is available for solid elements. *MAT _
FINITE_ELASTIC_STRAIN_PLASTICITY.

* A shape memory alloy material is available: *MAT_SHAPE_MEMORY.

» Reference geometry for material, *MAT_MODIFIED_HONEYCOMB, can be set at
arbitrary relative volumes or when the time step size reaches a limiting value. This
option is now available for all element types including the fully integrated solid
element.

* Non orthogonal material axes are available in the airbag fabric model. See
*MAT_FABRIC.

»  Other new constitutive models include for the beam elements:

*MAT_MODIFIED_FORCE_LIMITED
*MAT_SEISMIC_BEAM
*MAT_CONCRETE_BEAM

for shell and solid elements:
*MAT_ELASTIC_VISCOPLASTIC_THERMAL

for the shell elements:
*MAT_GURSON
*MAT_GEPLASTIC_SRATEZ2000
*MAT_ELASTIC_VISCOPLASTIC_THERMAL
*MAT_COMPOSITE_LAYUP
*MAT_COMPOSITE_LAYUP
*MAT_COMPOSITE_DIRECT

for the solid elements:
*MAT_JOHNSON_HOLMQUIST_CERAMICS
*MAT_JOHNSON_HOLMQUIST_CONCRETE
*MAT_INV_HYPERBOLIC_SIN
*MAT_UNIFIED_CREEP
*MAT_SOIL_BRICK
*MAT_DRUCKER_PRAGER
*MAT_RC_SHEAR_WALL

and for all element options a very fast and efficient version of the Johnson-Cook

plasticity model is available:
*MAT_SIMPLIFIED_JOHNSON_COOK

» A fully integrated version of the type 16 shell element is available for the resultant
constitutive models.

* A nonlocal failure theory is implemented for predicting failure in metallic materials.
The keyword *MAT_NONLOCAL activates this option for a subset of elastoplastic
constitutive models.

» A discrete Kirchhoff triangular shell element (DKT) for explicit analysis with three in
plane integration points is flagged as a type 17 shell element. This element has much
better bending behavior than the CO triangular element.

» A discrete Kirchhoff linear triangular and quadrilaterial shell element is available as a
type 18 shell. This shell is for extracting normal modes and static analysis.

* A CO linear 4-node quadrilaterial shell element is implemented as element type 20
with drilling stiffness for normal modes and static analysis.

» Anassumed strain linear brick element is available for normal modes and statics.
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* The fully integrated thick shell element has been extended for use in implicit
calculations.

» A fully integrated thick shell element based on an assumed strain formulation is now
available. This element uses a full 3D constitutive model which includes the normal
stress component and, therefore, does not use the plane stress assumption.

» The 4-node constant strain tetrahedron element has been extended for use in implicit
calculations.

* Relative damping between parts is available, see *DAMPING_RELATIVE (SMP
only).

* Preload forces are can be input for the discrete beam elements.

» Objective stress updates are implemented for the fully integrated brick shell element.

» Acceleration time histories can be prescribed for rigid bodies.

» Prescribed motion for nodal rigid bodies is now possible.

* Generalized set definitions, i.e., SET_SHELL GENERAL etc. provide much
flexibility in the set definitions.

* The command "sw4." will write a state into the dynamic relaxation file, D3DRLF,
during the dynamic relaxation phase if the D3DRLF file is requested in the input.

* Added mass by PART ID is written into the MATSUM file when mass scaling is used
to maintain the time step size, (SMP version only).

» Upon termination due to a large mass increase during a mass scaled calculation a print
summary of 20 nodes with the maximum added mass is printed.

» Eigenvalue analysis of models containing rigid bodies is now available using
BCSLIB-EXT solvers from Boeing. (SMP version only).

» Second order stress updates can be activated by part ID instead of globally on the
*CONTROL_ACCURACY input.

» Interface frictional energy is optionally computed for heat generation and is output
into the interface force file (SMP version only).

» The interface force binary database now includes the distance from the contact surface
for the FORMING contact options. This distance is given after the nodes are detected
as possible contact candidates. (SMP version only).

* Type 14 acoustic brick element is implemented. This element is a fully integrated
version of type 8, the acoustic element (SMP version only).

» A flooded surface option for acoustic applications is available (SMP version only).

» Attachment nodes can be defined for rigid bodies. This option is useful for NVH
applications.

* CONSTRAINED_POINTS tie any two points together. These points must lie on a
shell element.

» Soft constraint is available for edge-to-edge contact in type 26 contact.

* CONSTAINED_INTERPOLATION option for beam to solid interfaces and for
spreading the mass and loads. (SMP version only).

» A database option has been added that allows the output of added mass for shell
elements instead of the time step size.

* A new contact option allows the inclusion of all internal shell edges in contact type
*CONTACT_GENERAL, type 26. This option is activated by adding _INTERIOR
after the GENERAL keyword.

* A new option allows the use deviatoric strain rates rather than total rates in material
model 24 for the Cowper-Symonds rate model.
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» The CADFEM option for ASCII databases is now the default. Their option includes
more significant figures in the output files.

* When using deformable spot welds, the added mass for spot welds is now printed for
the case where global mass scaling is activated. This output is in the log file, D3HSP
file, and the MESSAG file.

* Initial penetration warnings for edge-to-edge contact are now written into the
MESSAG file and the D3HSP file.

» Each compilation of LS-DYNA is given a unique version number.

» Finite length discrete beams with various local axes options are now available for
material types 66, 67, 68, 93, and 95. In this implementation the absolute value of
SCOOR must be set to 2 or 3 in the *SECTION_BEAM input.

* New discrete element constitutive models are available:

*MAT_ELASTIC_SPRING_DISCRETE_BEAM
*MAT _INELASTIC_SPRING_DISCRETE_BEAM
*MAT_ELASTIC_6DOF_SPRING_DISCRETE_BEAM
*MAT _INELASTIC_6DOF_SPRING_DISCRETE_BEAM
The latter two can be used as finite length beams with local coordinate systems.

* Moving SPC's are optional in that the constraints are applied in a local system that
rotates with the 3 defining nodes.

* A moving local coordinate system, CID, can be used to determine orientation of
discrete beam elements.

* Modal superposition analysis can be performed after an eigenvalue analysis. Stress
recovery is based on type 18 shell and brick (SMP only).

» Rayleigh damping input factor is now input as a fraction of critical damping, i.e. 0.10.
The old method required the frequency of interest and could be highly unstable for
large input values.

» Airbag option "SIMPLE_PRESSURE_VOLUME" allows for the constant CN to be
replaced by a load curve for initialization. Also, another load curve can be defined
which allows CN to vary as a function of time during dynamic relaxation. After
dynamic relaxation CN can be used as a fixed constant or load curve.

» Hybrid inflator model utilizing CHEMKIN and NIST databases is now available. Up
to ten gases can be mixed.

» Option to track initial penetrations has been added in the automatic SMP contact
types rather than moving the nodes back to the surface. This option has been
available in the MPP contact for some time. This input can be defined on the fourth
card of the *CONTROL_CONTACT input and on each contact definition on the third
optional card in the *CONTACT definitions.

» If the average acceleration flag is active, the average acceleration for rigid body nodes
is now written into the D3THDT and NODOUT files. In previous versions of LS-
DYNA, the accelerations on rigid nodes were not averaged.

» A capability to initialize the thickness and plastic strain in the crash model is available
through the option *INCLUDE_STAMPED_PART, which takes the results from the
LS-DYNA stamping simulation and maps the thickness and strain distribution onto
the same part with a different mesh pattern.

* A capability to include finite element data from other models is available through the
option, *INCLUDE_TRANSFORM. This option will take the model defined in an
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INCLUDE file: offset all ID's; translate, rotate, and scale the coordinates; and
transform the constitutive constants to another set of units.

Many new capabilities were added during 2001-2002 to create version 970 of LS-DYNA.
Some of the new features, which are also listed below, were also added to later releases of
version 960. Most new explicit capabilities work for both the MPP and SMP versions; however,
the implicit capabilities for MPP require the development of a scalable eigenvalue solver and a
parallel implementation of the constraint equations into the global matrices.  This work is
underway. A later release of version 970 is planned that will be scalable for implicit solutions.

* MPP decomposition can be controlled using *CONTROL_MPP_DECOMPOSITION
commands in the input deck.

 The MPP arbitrary Lagrangian-Eulerian fluid capability now works for airbag
deployment in both SMP and MPP calculations.

» Euler-to-Euler coupling is now available through the keyword *CONSTRAINED _
EULER_TO_EULER.

* Up to ten ALE multi-material groups may now be defined. The previous limit was
three groups.

* Volume fractions can be automatically assigned during initialization of multi-material
cells. See the GEOMETRY option of *INITIAL_VOLUME_ FRACTION.

* A new ALE smoothing option is available to accurately predict shock fronts.

» DATABASE_FSI activates output of fluid-structure interaction data to ASCII file
DBFSI.

» Point sources for airbag inflators are available. The origin and mass flow vector of
these inflators are permitted to vary with time.

* A majority of the material models for solid materials are available for calculations
using the SPH (Smooth Particle Hydrodynamics) option.

* The Element Free Galerkin method (EFG or meshfree) is available for two-
dimensional and three-dimensional solids.  This new capability is not yet
implemented for MPP applications.

* A binary option for the ASCII files is now available. This option applies to all ASCII
files and results in one binary file that contains all the information normally spread
between a large number of separate ASCII files.

» Material models can now be defined by numbers rather than long names in the
keyword input. For example the keyword *MAT_PIECEWISE_LINEAR_
PLASTICITY can be replaced by the keyword: *MAT_024.

* An embedded NASTRAN reader for direct reading of NASTRAN input files is
available. This option allows a typical input file for NASTRAN to be read directly
and used without additional input. See the *INCLUDE_NASTRAN keyword.

* Names in the keyword input can represent numbers if the *PARAMETER option is
used to relate the names and the corresponding numbers.

* Model documentation for the major ASCII output files is now optional. This option
allows descriptors to be included within the ASCII files that document the contents of
the file.

* ID’s have been added to the following keywords:

*BOUNDARY_PRESCRIBED MOTION
*BOUNDARY_PRESCRIBED_SPC
*CONSTRAINED_GENERALIZED WELD

1.14



LS-DYNA Theory Manual Introduction

*CONSTRAINED_JOINT
*CONSTRAINED _NODE_SET
*CONSTRAINED_RIVET
*CONSTRAINED_SPOTWELD
*DATABASE_CROSS_SECTION
*ELEMENT_MASS

» The *DATABASE_ADAMS keyword is available to output a modal neutral file
d3mnf. This is available upon customer request since it requires linking to an
ADAMS library file.

» Penetration warnings for the contact option, “ignore initial penetration,” are added as
an option. Previously, no penetration warnings were written when this contact option
was activated.

» Penetration warnings for nodes in-plane with shell mid-surface are printed for the
AUTOMATIC contact options. Previously, these nodes were ignored since it was
assumed that they belonged to a tied interface where an offset was not used;
consequently, they should not be treated in contact.

» For the arbitrary spot weld option, the spot welded nodes and their contact segments
are optionally written into the D3HSP file. See *CONTROL_CONTACT.

» For the arbitrary spot weld option, if a segment cannot be found for the spot welded
node, an option now exists to error terminate. See *CONTROL_CONTACT.

» Spot weld resultant forces are written into the SWFORC file for solid elements used
as spot welds.

» Solid materials have now been added to the failed element report and additional
information is written for the “node is deleted” messages.

* A new option for terminating a calculation is available, *TERMINATION_CURVE.

* A 10-noded tetrahedron solid element is available with either a 4 or 5 point
integration rule. This element can also be used for implicit solutions.

* Anew 4 node linear shell element is available that is based on Wilson’s plate element
combined with a Pian-Sumihara membrane element. This is shell type 21.

* A shear panel element has been added for linear applications. This is shell type 22.
This element can also be used for implicit solutions.

* A null beam element for visualization is available. The keyword to define this null
beam is *ELEMENT_PLOTEL. This element is necessary for compatibility with
NASTRAN.

» A scalar node can be defined for spring-mass systems. The keyword to define this
node is *NODE_SCALAR. This node can have from 1 to 6 scalar degrees-of-
freedom.

» A thermal shell has been added for through-thickness heat conduction. Internally, 8
additional nodes are created, four above and four below the mid-surface of the shell
element. A quadratic temperature field is modeled through the shell thickness.
Internally, the thermal shell is a 12 node solid element.

* A beam OFFSET option is available for the *ELEMENT_BEAM definition to permit
the beam to be offset from its defining nodal points. This has the advantage that all
beam formulations can now be used as shell stiffeners.

* A beam ORIENTATION option for orienting the beams by a vector instead of the
third node is available in the *ELEMENT_BEAM definition for NASTRAN
compatibility.
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* Non-structural mass has been added to beam elements for modeling trim mass and for
NASTRAN compatibility.

* An optional checking of shell elements to avoid abnormal terminations is available.
See *CONTROL_SHELL. If this option is active, every shell is checked each time
step to see if the distortion is so large that the element will invert, which will result in
an abnormal termination. If a bad shell is detected, either the shell will be deleted or
the calculation will terminate. The latter is controlled by the input.

* An offset option is added to the inertia definition. See *ELEMENT _INERTIA _
OFFSET keyword. This allows the inertia tensor to be offset from the nodal point.

» Plastic strain and thickness initialization is added to the draw bead contact option.
See *CONTACT_DRAWBEAD _INITIALIZE.

» Tied contact with offsets based on both constraint equations and beam elements for
solid elements and shell elements that have 3 and 6 degrees-of-freedom per node,
respectively. See BEAM_OFFSET and CONSTRAINED_OFFSET contact options.
These options will not cause problems for rigid body motions.

* The segment-based (SOFT=2) contact is implemented for MPP calculations. This
enables airbags to be easily deployed on the MPP version.

* Improvements are made to segment-based contact for edge-to-edge and sliding
conditions, and for contact conditions involving warped segments.

* An improved interior contact has been implemented to handle large shear
deformations in the solid elements. A special interior contact algorithm is available
for tetrahedron elements.

* Coupling with MADYMO 6.0 uses an extended coupling that allows users to link
most MADYMO geometric entities with LS-DYNA FEM simulations. In this
coupling MADYMO contact algorithms are used to calculate interface forces between
the two models.

* Release flags for degrees-of-freedom for nodal points within nodal rigid bodies are
available. This makes the nodal rigid body option nearly compatible with the RBE2
option in NASTRAN.

» Fast updates of rigid bodies for metalforming applications can now be accomplished
by ignoring the rotational degrees-of-freedom in the rigid bodies that are typically
inactive during sheet metal stamping simulations. See the keyword:
*CONTROL_RIGID.

» Center of mass constraints can be imposed on nodal rigid bodies with the SPC option
in either a local or a global coordinate system.

» Joint failure based on resultant forces and moments can now be used to simulate the
failure of joints.

* CONSTRAINED_JOINT_STIFFNESS now has a TRANSLATIONAL option for the
translational and cylindrical joints.

» Joint friction has been added using table look-up so that the frictional moment can
now be a function of the resultant translational force.

* The nodal constraint options *CONSTRAINED_INTERPOLATION and
*CONSTRAINED_LINEAR now have a local option to allow these constraints to be
applied in a local coordinate system.

* Mesh coarsening can now be applied to automotive crash models at the beginning of
an analysis to reduce computation times. See the new keyword:
*CONTROL_COARSEN.
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» Force versus time seatbelt pretensioner option has been added.

» Both static and dynamic coefficients of friction are available for seat belt slip rings.
Previously, only one friction constant could be defined.

* *MAT_SPOTWELD now includes a new failure model with rate effects as well as
additional failure options.

» Constitutive models added for the discrete beam elements:
*MAT_1DOF_GENERALIZED_SPRING
*MAT_GENERAL_NONLINEAR_6DOF_DISCRETE_BEAM
*MAT_GENERAL_NONLINEAR_1DOF_DISCRETE_BEAM
*MAT_GENERAL_SPRING_DISCRETE_BEAM
*MAT_GENERAL_JOINT_DISCRETE_BEAM
*MAT_SEISMIC_ISOLATOR

for shell and solid elements:
*MAT_PLASTICITY_WITH_DAMAGE_ORTHO
*MAT_SIMPLIFIED_JOHNSON_COOK_ORTHOTROPIC_DAMAGE
*MAT_HILL_3R
*MAT_GURSON_RCDC

for the solid elements:
*MAT_SPOTWELD
*MAT_HILL_FOAM
*MAT_WOOD
*MAT _VISCOELASTIC_HILL_FOAM
*MAT_LOW_DENSITY_SYNTHETIC_FOAM
*MAT_RATE_SENSITIVE_POLYMER
*MAT_QUASILINEAR VISCOELASTIC
*MAT_TRANSVERSELY_ANISOTROPIC_CRUSHABLE FOAM
*MAT_VACUUM
*MAT_MODIFIED _CRUSHABLE_FOAM
*MAT _PITZER_CRUSHABLE FOAM
*MAT _JOINTED_ROCK
*MAT_SIMPLIFIED _RUBBER
*MAT_FHWA_SOIL
*MAT_SCHWER_MURRAY_CAP_MODEL

» Failure time added to MAT_EROSION for solid elements.

o« Damping in the material models *MAT_LOW_DENSITY_FOAM and
*MAT_LOW_DENSITY_VISCOUS_FOAM can now be a tabulated function of the
smallest stretch ratio.

* The material model *MAT_PLASTICITY_WITH_DAMAGE allows the table
definitions for strain rate.

* Improvements in the option *INCLUDE_STAMPED_PART now allow all history
data to be mapped to the crash part from the stamped part. Also, symmetry planes can
be used to allow the use of a single stamping to initialize symmetric parts.

» Extensive improvements in trimming result in much better elements after the
trimming is completed. Also, trimming can be defined in either a local or global
coordinate system. This is a new option in *DEFINE_CURVE_TRIM.

* An option to move parts close before solving the contact problem is available, see
*CONTACT_AUTO_MOVE.
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* An option to add or remove discrete beams during a calculation is available with the
new keyword: *PART_SENSOR.

» Multiple jetting is now available for the Hybrid and Chemkin airbag inflator models.

» Nearly all constraint types are now handled for implicit solutions.

» Calculation of constraint and attachment modes can be easily done by using the
option: *CONTROL_IMPLICIT_MODES.

* Penalty option, see *CONTROL_CONTACT, now applies to all *RIGIDWALL
options and is always used when solving implicit problems.

» Solid elements types 3 and 4, the 4 and 8 node elements with 6 degrees-of-freedom
per node, are available for implicit solutions.

» The warping stiffness option for the Belytschko-Tsay shell is implemented for
implicit solutions. The Belytschko-Wong-Chang shell element is now available for
implicit applications. The full projection method is implemented due to it accuracy
over the drill projection.

* Rigid to deformable switching is implemented for implicit solutions.

» Automatic switching can be used to switch between implicit and explicit calculations.
See the keyword: *CONTROL_IMPLICIT_GENERAL.

* Implicit dynamics rigid bodies are now implemented. See the keyword
*CONTROL_IMPLICIT_DYNAMIC.

» Eigenvalue solutions can be intermittently calculated during a transient analysis.

* A linear buckling option is implemented. See the new control input: *CONTROL_
IMPLICIT_BUCKLE

* Implicit initialization can be used instead of dynamic relaxation. See the keyword
*CONTROL_DYNAMIC_RELAXATION where the parameter, IDFLG, is set to 5.

» Superelements, i.e., *ELEMENT_DIRECT_MATRIX_INPUT, are now available for
implicit applications.

» There is an extension of the option, *BOUNDARY_CYCLIC, to symmetry planes in
the global Cartesian system. Also, automatic sorting of nodes on symmetry planes is
now done by LS-DYNA.

* Modeling of wheel-rail contact for railway applications is now available, see
*RAIL_TRACK and *RAIL_TRAIN.

* A new, reduced CPU, element formulation is available for vibration studies when
elements are aligned with the global coordinate system. See *SECTION_SOLID and
*SECTION_SHELL formulation 98.

* An option to provide approximately constant damping over a range of frequencies is
implemented, see *DAMPING_FREQUENCY_RANGE.
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2. PRELIMINARIES

Consider the body shown in Figure 2.1. We are interested in time-dependent deformation
in which a point in b initially at X, (=1, 2, 3) in a fixed rectangular Cartesian coordinate

system moves to a point x (i =1, 2, 3) in the same coordinate system. Since a Lagrangian

formulation is considered, the deformation can be expressed in terms of the convected
coordinates X, and time t

X =% (X,t) (2.1)
At time t=0, we have the initial conditions

%(X,,0)=X, (2.2a)

%(X 0=V, (X,) (2.2b)

where V, defines the initial velocities.

2.1 Governing Equations
We seek a solution to the momentum equation

0,5+ p = pX (23)
satisfying the traction boundary conditions
o,n =t(t) (2.4)
on boundary d by, the displacement boundary conditions
X (X, t) =D, (1) (2.5)
on boundary d by, the contact discontinuity
(67 -0;) n=0 (2.6)

along an interior boundary d bz when x* =x". Here o; is the Cauchy stress, p is the current
density, f is the body force density, X is acceleration, the comma denotes covariant
differentiation, and n; is a unit outward normal to a boundary element of ob
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Figure2.1. Notation.
Mass conservation is trivially stated
oV = p, (2.7)

where V is the relative volume, i.e., the determinant of the deformation gradient matrix, F;,

I
= 2.8
] 8)(] ( )
and p, is the reference density. The energy equation
E=Vgé—(p+q)V (2.9)

IS integrated in time and is used for equation of state evaluations and a global energy balance. In
Equation (2.9), s; and p represent the deviatoric stresses and pressure,

§ =0, +(p+a)d; (2.10)
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1 1
pz_go-ijai' _q=_§o-kk_q (2'11)

respectively, g is the bulk viscosity, ¢; is the Kronecker delta (6, =1 if i=j; otherwise

6;=0) and &; is the strain rate tensor. The strain rates and bulk viscosity are discussed later.
We can write:

J‘V(pXi—O'ij’j—pf) 5>gdv+.[aq(oanj—ti) oxds
2.12)
+jab3((7ij+—(7ij’) n,oxds=0

where ox satisfies all boundary conditions on db,, and the integrations are over the current
geometry. Application of the divergence theorem gives

L (630%),; dv:.[&qa”njé)gd%jabs(a”*—qj‘)njéxds (2.13)
and noting that
(030%),; 0;,;6% = 00X (2.14)
leads to the weak form of the equilibrium equations:
ovz:jv K 5>gdv+jvq15>g,jdu—jvpfi5>gdu—jaqti5>gds=o (2.15)

a statement of the principle of virtual work.
We superimpose a mesh of finite elements interconnected at nodal points on a reference
configuration and track particles through time, i.e.,

X (Xat) =X (Xa(f,n,{),t)=g¢,- (&m &)X (t) (2.16)

where ¢, are shape (interpolation) functions of the parametric coordinates (£,7,¢), k is the

number of nodal points defining the element, and x’ is the nodal coordinate of the jth node in the

ith direction.
Summing over the n elements we may approximate oz with

57Z:Zn:57zm =0 (2.17)

m=1
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and write

Zn: {jv pX@imdv+Iv q?@iﬂdv—Jv pfidii"‘dv—Lmtidiimds1 =0 (2.18)

m=1

where

"= (0,6, 0.) (2.19)

In matrix notation Equation (2.18) becomes

Z{ [, PN'Nadv+[ B'odv-[ pNbdv-[ Nttds}mzo (2.20)

m=1

where N is an interpolation matrix, o is the stress vector
0'=(04,0,,0,,0,0,0,) (2.21)

B is the strain-displacement matrix, a is the nodal acceleration vector

am
ayl
: |=Na (2.22)

XX X
Il
Z

Ay,
a,

b is the body force load vector, and t are applied traction loads.

fX tX
b=| f, |, t=|t, (2.23)
f t
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3. SOLID ELEMENTS

For a mesh of 8-node hexahedron solid elements, Equation (2.16) becomes:
8 .
X (X t) =% (X, (£1.8).t) =28, (Em )X (1) (3.1)

=

The shape function ¢, is defined for the 8-node hexahedron as

0, =31+ (1+m)) (1+4¢)) @2)

where ¢&;, 77, ¢; take on their nodal values of (+1, +1, +1) and x' is the nodal coordinate of the

jth node in the ith direction (see Figure 3.1).
For a solid element, N is the 3 x 24 rectangular interpolation matrix given by

¢ 0 0 ¢, O -~ 0O O
N(f,ﬂ.§)= 0 ¢ 0 0 ¢ - ¢ O (3.3)
0O 0g 0O O -~ 0 ¢

o is the stress vector

0'=(04,0,,0,,0,0,0,) (34)
B is the 6 x 24 strain-displacement matrix
i 0 O
IX
0 i 0
Yy
(3.5)
0 O L
Jz
B= PR N
— — 0
dy oJx
o 2 2
Jz dy
I 9 2
| Jz X |
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Node| & M &
1 -1 -1 -1
2 1 -1 -1
3| 1 1 -
4 |1 1
5 -1 1 1
6 1 -1 1
7 1 1 1
8 -1 1 1

3

Figure 3.1. Eight-node solid hexahedron element.

In order to achieve a diagonal mass matrix the rows are summed giving the kth diagonal
term as

m, = ch»kiazdv = | pgdv (3.6)

since the basis functions sum to unity.
Terms in the strain-displacement matrix are readily calculated. Note that

96, &gb IX o”gb 8y ¢ Iz
dE X o”é’ dy &5 Jz o”é’
9P, _ I IX &(/5, &y g Jz

AR ATy TAYE (3.7)
&77 IX &77 dy &77 Jdz on
9P, _ Ip Ix &¢| 8y 99 Iz
I Ix o”g“ ady o”g“ Jz o”g“
which can be rewritten as
9| [oxayoz]|as | |[o]
o dE JdE IE | | Ix IX
9 |_|axayoz||dv |_, % a8)
on| |dnaonon||dy ay
d | |oxdyoz|law | |
dC | |5 Id I || dz | | dz]

3.2



LS-DYNA Theory Manual Solid Elements
Inverting the Jacobian matrix, J, we can solve for the desired terms
9| [2]
IX o
% =J7 % (3.9)
dy an
2] %
Jz 4

3.1 Volume Integration

Volume integration is carried out with Gaussian quadrature.
defined over the volume, and n is the number of integration points, then

[Lgdv=["[ [ 0|3dgdnds

is approximated by

>

where w;, w, w are the weighting factors,

n

n

Zgjkl “]jkl‘WjWk\Nl

=1 k=1 1=1

gjkI:g(é:j’nk’CI)

If g is some function

(3.10)

(3.11)

(3.12)

and J is the determinant of the Jacobian matrix. For one-point quadrature

n=1
Wi:Wj:WKZZ
4:1:771:4’1:0

and we can write

[ odv=89(0,0,0)|3(0,0,0)

Note that 8|J (0,0,0)| approximates the element volume.

(3.13)

(3.14)

Perhaps the biggest advantage to one-point integration is a substantial savings in

computer time. An anti-symmetry property of the strain matrix
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(3.15)

at £=n={=0 reduces the amount of effort required to compute this matrix by more than 25

times over an 8-point integration. This cost savings extends to strain and element nodal force
calculations where the number of multiplies is reduced by a factor of 16. Because only one
constitutive evaluation is needed, the time spent determining stresses is reduced by a factor of 8.
Operation counts for the constant stress hexahedron are given in Table 3.2. Included are counts
for the Flanagan and Belytschko [1981] hexahedron and the hexahedron used by Wilkins [1974]
in his integral finite difference method, which was also implemented [Hallquist 1979].

It may be noted that 8-point integration has another disadvantage in addition to cost.
Fully integrated elements used in the solution of plasticity problems and other problems where
Poisson’s ratio approaches .5 lock up in the constant volume bending modes. To preclude
locking, an average pressure must be used over the elements; consequently, the zero energy
modes are resisted by the deviatoric stresses. If the deviatoric stresses are insignificant relative to
the pressure or, even worse, if material failure causes loss of this stress state component,
hourglassing will still occur, but with no means of resisting it. Sometimes, however, the cost of
the fully integrated element may be justified by increased reliability and if used sparingly may
actually increase the overall speed.

3.2 Hourglass Control

The biggest disadvantage to one-point integration is the need to control the zero energy
modes, which arise, called hourglassing modes. Undesirable hourglass modes tend to have
periods that are typically much shorter than the periods of the structural response, and they are
often observed to be oscillatory. However, hourglass modes that have periods that are
comparable to the structural response periods may be a stable kinematic component of the global
deformation modes and must be admissible. One way of resisting undesirable hourglassing is
with a viscous damping or small elastic stiffness capable of stopping the formation of the
anomalous modes but having a negligible affect on the stable global modes. Two of the early
three-dimensional algorithms for controlling the hourglass modes were developed by Kosloff and
Frazier [1974] and Wilkins et al. [1974].

Since the hourglass deformation modes are orthogonal to the strain calculations, work
done by the hourglass resistance is neglected in the energy equation. This may lead to a slight
loss of energy; however, hourglass control is always recommended for the under integrated solid
elements. The energy dissipated by the hourglass forces reacting against the formations of the
hourglass modes is tracked and reported in the output files MATSUM and GLSTAT.
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7
/ ¥
/ML I
FN
1k 2k
- - o > /
/ /N \ /|7 \
1 //_- 3 A \ =3
3k 4k

Figure3.2. The hourglass modes of an eight-node element with one integration point are
shown [Flanagan and Belytschko 1981]. A total of twelve modes exist.

It is easy to understand the reasons for the formation of the hourglass modes. Consider
the following strain rate calculations for the 8-node solid element

. 1 &adp . do
= XX 3.16

]

Whenever diagonally opposite nodes have identical velocities, i.e.,
X=X ¢=x.5=x%=% (3.17)
the strain rates are identically zero:

£ =0 (3.18)
due to the asymmetries in Equations (3.15). It is easy to prove the orthogonality of the hourglass
shape vectors, which are listed in Table 3.1 and shown in Figure 3.2 with the derivatives of the
shape functions:

Ba¢
—TI
Zeox

=0 =123 «a=1234 (3.19)

ok

The product of the base vectors with the nodal velocities
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8

ha = Z )‘(ikrak = 0 (320)

k=1

are nonzero if hourglass modes are present. The 12 hourglass-resisting force vectors, fX are

fiolz( :ahharak (321)
where
% C
8, =QuPV’ (3.22)

in which v, is the element volume, c is the material sound speed, and Q,is a user-defined

constant usually set to a value between .05 and .15. The hourglass resisting forces of Equation
(3.21) are not orthogonal to rigid body rotations; however, the approach of Flanagan and
Belytschko [1981] is orthogonal.

0=1 (=2 11=3 =4
i 1 1 1 1
i 1 -1 -1 -1
i3 -1 -1 1 1
ia -1 1 -1 -1
Djs -1 -1 1 -1
is -1 1 -1 1
Dj7 1 1 1 -1
ig 1 -1 -1 1

Table 3.1. Hourglass base vectors.
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Flanagan- Wilkins

DYNA3D Belytschko [1981] FDM
Strain displacement matrix 94 357 843
Strain rates 87 156
Force 117 195 270
Subtotal 298 708 1,113
Hourglass control 130 620 680
Total 428 1,328 1,793

Table 3.2. Operation counts for a constant stress hexahedron (includes adds,
subtracts, multiplies, and divides in major subroutines, and is independent
of vectorization). Material subroutines will add as little as 60 operations
for the bilinear elastic-plastic routine to ten times as much for multi-
surface plasticity and reactive flow models. Unvectorized material
models will increase that share of the cost a factor of four or more.

Instead of resisting components of the bilinear velocity field that are orthogonal to the
strain calculation, Flanagan and Belytschko resist components of the velocity field that are not
part of a fully linear field. They call this field, defined below, the hourglass velocity field

X =% - (3.23)
where
X =X+%, (X -X)) (3.24)
o1& L 1&E
X=-2%  X==>X% (3.25)
8ia 8o

Flanagan and Belytschko construct geometry-dependent hourglass shape vectors that are
orthogonal to the fully linear velocity field and the rigid body field. With these vectors they
resist the hourglass velocity deformations. Defining hourglass shape vectors in terms of the base
vectors as

8
Yok =L o — & Z X', (3.26)
=1
and setting

8
gia = z)'(ik}/ak = O !
k=1
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the 12 resisting force vectors become

flolc< = ahgia}/ak (327)

where a, is a constant given in Equation (3.21).

The hourglass forces given by Equations (3.21) and (3.27) are identical if the, hexahedron
element is a parallelepiped. The default hourglass control method for solid element is given by
Equation (3.21); however, we recommend the Flanagan-Belytschko approach for problems that
have large rigid body rotations since the default approach is not orthogonal to rigid body
rotations.

A cost comparison in Table 3.2 shows that the default hourglass viscosity requires
approximately 130 adds or multiplies per hexahedron, compared to 620 and 680 for the
algorithms of Flanagan-Belytschko and Wilkins.

The type 6 hourglass stabilization for the 3D hexahedral element is available for both
implicit and explicit solutions. Based on material properties and element geometry, this stiffness
type stabilization is developed by an assumed strain method [Belytschko and Bindeman 1993]
such that the element does not lock with nearly incompressible material. When the user defined

hourglass constant Q,, is set to 1.0, accurate coarse mesh bending stiffness is obtained for elastic

material. For nonlinear material, a smaller value of Q,, is suggested and the default value is set
to 0.1. In the implicit form, the assumed strain stabilization matrix is:

ki Ky Ky
K= = 2UQug | Ky Ky Ky (3.28)
Ko Ky Ky

where the 8 x 8 submatricies are calculated by:

N R e e A G M P

K,—EHi,-Klf jm %%7}} (3.30)
Ej ) _j dv 3j ) (3.68)

;= [ hydv (3.31)

h=¢n h=nd h=40 h=cnd (3.32)
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Subscripts i, j,and k are permuted as in Table 3.3. A comma indicates a derivative with
respect to the spatial variable that follows. The hourglass vectors, y, are defined by equation

(3.26). The stiffness matrix is evaluated in a corotational coordinate system that is aligned with
the referential axis of the element. The use of a corotational system allows direct evaluation of
integrals in equations (3.30) and (3.31) by simplified equations that produce a more accurate
element than full integration.

i =LA (M%) (3,33
3 (Alx)

H, =%(Akak) (3.33b)

A, are 8 x 1 matrices of the referential coordinates of the nodes as given in Figure 3.1, and X

are 8x1 matrices of the nodal coordinates in the corotational system. For each material type, a
Poisson's ratio, v, and an effective shear modulus, «, is needed.

WWNNEFE R —
NFPFPWWN~—
P NWEFEDNWX

Table 3.3. Permutations of i, j, and k.

In the explicit form, the 12 hourglass force stabilization vectors are

[ =2 QgQu7% (3.34)

a=1

where the 12 generalized stresses are calculated incrementally by

1
Q) = Q' +AQ, (3.35)
and
Qii = u[(H it Hkk)qii + Hijqjj +Hi G| (3.36)
: 1 . .
Qlj =2U[— H;q; +vH i1 (3.37)
1-v
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: 1+ .
Qu,=2u (ij HiiG, (3.38)
Go = Yok (3.39)

Subscripts i, j,and k are permuted as per Table 3.3. As with the implicit form, calculations are

done in a corotational coordinate system in order to use the simplified equations (3.33a) and
(3.33b).

3.3 Puso Hourglass Control

Regarding the solid elements in LS-DYNA, the fully integrated brick uses selective-
reduced integration, which is known to alleviate volumetric locking but not shear locking for
elements with poor aspect ratio. The enhanced assumed strain methods have been the most
successful at providing coarse mesh accuracy for general non-linear material models. In short,
these elements tend to sacrifice computational efficiency for accuracy and are hence of little
interest in explicit analysis. Puso [2000] developed an enhanced assumed strain element that
combines coarse mesh accuracy with computational efficiency. It is formulated as a single point
integrated brick with an enhanced assumed strain physical stabilization. In this project, we have
implemented this element in LS-DYNA and made comparisons with the assumed strain element
developed by Belytschko and Bindeman [1993] to see whether it brings anything new to the
existing LS-DYNA element library.

The element formulation is that of Puso [2000], and is essentially the mean strain
hexahedral element by Flanagan and Belytschko [1981] in which the perturbation hourglass
control is substituted for an enhanced assumed strain stabilization force.

Given the matrices

1] (-1 -1 -1] [ 1 1 -1
1 -1 -1 -1 -1 1
1 -1 -1 -1 1 -1
1 -1 -1 -1 1 -1
5= == H = (3.40)
1 -1 -1 1 -1 -1 1
1 1 -1 1 -1 1 -1 -1
1 1 1 1 1 1 1 1
1) -1 1 1] | -1 -1 -1]
we can define the vector of shape functions as
1 .=
N(&) = §(S+ EE+Hh(E)) (3.41)

where
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e=|n|  h@= 2:; . (3.42)
S
ng
The position vector
X(8)
X(&) =1 y(&) (3.43)
z(€)
is for isoparametric finite elements given as
X(8) =X"N(), (3.44)
where
X Vi z]
X2 y2 ZZ
X Y3 4
X: X4 y4 Z4 (3.45)
X Y5 4
X Y5 &
X Y 4
L% Y5 4]

is the matrix of nodal coordinates. The Jacobian matrix maps the isoparametric domain to the
physical domain as

J(E)= a)(;—(;) (3.46)

and we find the Jabobian matrix at the element centroid to be

XT

ui

1
. (3.47)

We may use this to rewrite the vector of shape functions partially in terms of the position vector
as
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N(&) =b, +B,x+TIh(g) (3.48)

where

b, =%{| -BX"}s

1

r= §{| ~BX"}H (3.49)
1_ .-

BO :g Jol

The gradient-displacement matrix from this expression is given as

B(€) =B, +B,(&) (3.50)
where
_oh(€) .\
Bs(é)—F—aé J©). (3.51)
We have
0 ¢ 7
ohE _|s 0 ¢ -
& |n & o0 (352
ns & én

At this point we substitute the gradient-displacement matrix at the centroid of the element B,
with the mean gradient-displacement matrix B defined as

- 1
B V. j B(&)dV, , (3.53)

where € refers to the element domain and V, is the volume of the element, in all of the
expressions above. That is

r=

0|

{I-BX"}H (3.54)

and

B(£) = B+Bs(£) (3.55)
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where

ah(%)

Bs(§)=T—>-3(8)™. (3.56)

Proceeding, we write the expression for the rate-of-deformation as

s:%(XTB(gHB(g)TX)=%(XT§+§TX)+%(XT§S@)+§S(g)T>'<)

L5 s L g TG v ey [0 T

=S (XTB+B X))+ (X'T % JE) T +IE) ( % jFX) (3.57)
L m a5 L g g 2NE | (9h@) 4
=5 (XTB+B 0+ T AT, +( % j I XJ(2)I()

where we substitute the occurrences of the jacobian matrix J(&) with the following expressions

= L(XCB+B X)+ 13, TATXT rpon@) (ah(g)j r'xJ)J,*  (3.58)
2 2 % P

where

i

J, = li-| (3.59)

s

and j, is the i:th column in the matrix J,. This last approximation is the key to the mesh
distortion insensitivity that characterizes the element.

Changing to Voigt notation, we define the stabilization portion of the strain rate as

&,=J,"B,(&)u (3.60)

where now
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Jia™
=2
iz
: Jial
J, = : R (3.61)
il 2]
=Ly, -l
il [
T
i i i
VoSS 0 0 |
0 V16 +Y:8 7,68 0
BS(&J) — _O _O ¢U) + 725 + 74577 (362)
Y6 V25 0
0 725 735
Y 0 &Y

and U is the vector of nodal velocities transformed to the isoparametric system according to
u=3u (3.63)

where 3 is the 24 by 24 matrix that transforms the 8 nodal velocity vectors to the isoparametric
domain given by

JT
0
3 =perm : (3.64)
35
Moreover, ?i is the i:th row of T'. We have deliberately neglected terms that cause
parallelepiped finite elements to lock in shear.

To eliminate Poisson type locking in bending and volumetric locking, an enhanced
isoparametric rate-of-strain field is introduced as

¢, =J'G(E)a (3.65)

with
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£ 00 &n ng &
0 n 0 ¢én ng &
< 0 0 ¢ én ns &
G(&) = . 3.66
© 0 00O 0O O O ( )
0 00O 0O O O
0 00 0 0 0]
Hence, the stabilized strain field becomes
=3, (B.(®U+GE)a) =J, "¢, (3.67)

where @ is the enhanced strain vector that must be determined from an equilibrium condition.
The virtual work equation can be written

oW, J-5£ cdV,

:jas J sV,

. (3.68)
= [6e" 30T [CFEdrav,
e 0

t
= [ 6673797 [ 337 Coédd,
e 0
t
= [ 8e" [,3, [ 33, TCoid v,
p 0
t
= [oe7a] j iodo TC73, 1 gd TV,
p

- 5~Tj\£ e, Edrdv
o 8 ’ i

where J is the determinant of the deformation gradient, J is the push-forward operator of a
symmetric 2" order tensor, j, is the determinant of the jacobian matrix, j, is the determinant of
the jacobian matrix at time 0, o is the true stress tensor, S is the 2" Piola-Kirchhoff stress
tensor, C¥ is the material tangent modulus, C° is the spatial tangent modulus and V, is the

volume of the element. In the above, we have used various transformation formulae between
different stress and constitutive tensors. At this point we are only interested in how to handle the
stabilization portion of the strain rate field, the constant part is only used to update the midpoint
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stress as usual. Because of orthogonality properties of the involved matrices, it turns out that we
may just insert the expression for the stabilization strain rate field to get

int

t
s ~ Ve 7 -Tr~o7 -12
W, zj&g{EJo TCod, %
(3.69)

~T T BS(Q)T tVeAfT c7 -1 n ~ l]
=[o0" du Mié(éfhg% C°J, " [B(®) G(ﬁ)]LJdeVp

The stabilization contribution to the internal force vector is given by

fU — ST 0 ES(&)T t\é" TA~cT -1 B ~ S Ol|lu
LQHO IMG(&)T}I g% O [B© G@)J{o J{a}dm\’p'(m)

0

In a discretization, the condition f, =0 is used to determine Aa, the increment of the enhanced

strain variables, from Au, the increment in displacements. This is inserted back into the
expression for the internal force vectors to determine f,, the stabilization contribution to the

internal force vector.

The implementation of the element is very similar to the implementation of the one point
integrated mean strain hexahedral by Flanagan and Belytschko [1981]. The hourglass forces are
calculated in a different manner.

From the midpoint stress update we get a bulk and shear modulus characterizing the
material at this specific point in time. From this we form the isotropic spatial tangent modulus

C? to be used for computing the stabilization force from Equation (3.70).

3.4 Fully Integrated Brick Elementsand Mid-Step Strain Evaluation
To avoid locking in the fully integrated brick elements strain increments at a point in a
constant pressure, solid element are defined by [see Nagtegaal, Parks, and Rice 1974]

JAV N JAU
&AU o-)Xn+}§ &ym—}é
Ae, =—+ Ag,, =
XX &Xm—% ¢ Xy 2
JAW N JAV
_ &AV _ &ym—}é &Zn+%
Agyy —W+¢ Agyz = > (371)
JAU JAW
&AW &Zn+% + (A
Ae, ="+ Ae, = X
dz 2
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where ¢ modifies the normal strains to ensure that the total volumetric strain increment at each
integration point is identical

JAU N JAV N OAW
¢_Agn+}§_ &Xm—}/z &yn+% &Zm—%
Y 3

and Aev’”% is the average volumetric strain increment in the midpoint geometry

1
¥

[ JdAu JAV AW j "

Ly o-;Xn+}/2 + o-;yn+}§ + 0-)Zn+%

, (3.72)

d n+%
vn:!’% '

Au, Av, and Aw are displacement increments in the X, y, and zdirections, respectively, and

n n+1
X" = <X+—2X) , (3.73a)

yn+% _ (yn + yn+1 )

> , (3.73b)
Zn + Zn+1
2" — % , (3.73¢)

To satisfy the condition that rigid body rotations cause zero straining, it is necessary to use the
geometry at the mid-step in the evaluation of the strain increments. As the default, LS-DYNA
currently uses the geometry at step n+1 to save operations; however, for implicit calculations

the mid-step strain calculation is always recommended, and, for explicit calculations, which
involve rotating parts, the mid-step geometry should be used especially if the number of
revolutions is large. The mid-step geometry can be activated either globally or for a subset of
parts in the model by using the options on the control card, *CONTROL_ACCURACY.

Since the bulk modulus is constant in the plastic and viscoelastic material models,
constant pressure solid elements result. In the thermoelastoplastic material, a constant
temperature is assumed over the element. In the soil and crushable foam material, an average
relative volume is computed for the element at time step n+1, and the pressure and bulk
modulus associated with this relative volume is used at each integration point. For equations of
state, one pressure evaluation is done per element and is added to the deviatoric stress tensor at
each integration point.
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The foregoing procedure requires that the strain-displacement matrix corresponding to

Equations (3.40) and consistent with a constant volumetric strain, B, be used in the nodal force
calculations [Hughes 1980]. It is easy to show that:

n+

F :J' N B 0n+ldV n+1 :J . Bn+lt 0n+ldV n+l (374)

and avoid the needless complexities of computing B.

3.5 Four Node Tetrahedron Element

The four node tetrahedron element with one point integration, shown in Figure 3.3, is a
simple, fast, solid element that has proven to be very useful in modeling low density foams that
have high compressibility. For most applications, however, this element is too stiff to give
reliable results and is primarily used for transitions in meshes. The formulation follows the
formulation for the one point solid element with the difference that there are no kinematic modes,
so hourglass control is not needed. The basis functions are given by:

N,(r,st)=r
N,(r,st)=s
N,(r,st)=1-r—s—t
N,(r,st)=t

Ta

% r

S

Figure 3.3. Four node tetrahedron.

If a tetrahedron element is needed, this element should be used instead of the collapsed
solid element since it is, in general, considerably more stable in addition to being much faster.
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Automatic sorting can be used, see *CONTROL_SOLID keyword, to segregate these elements in
a mesh of 8 node solids for treatment as tetrahedrons.

3.6 Six Node Pentahedron Element

The pentahedron element with two point Gauss integration along its length, shown in
Figure 3.4, is a solid element that has proven to be very useful in modeling axisymmetric
structures where wedge shaped elements are used along the axis-of-revolution. The formulation
follows the formulation for the one point solid element with the difference that, like the
tetrahedron element, there are no kinematic modes, so hourglass control is not needed. The basis
functions are given by:

Nl(r,s,t):%(l—t)r

N, (r,st) :%(1—t)(1—r —S)

Ngnsozéa+na—r—9
N4n30:%ﬂ+0r
Ngnsuzéa—os
NAnaU:%a+Us

If a pentahedron element is needed, this element should be used instead of the collapsed
solid element since it is, in general, more stable and significantly faster. Automatic sorting can
be used, see *CONTROL_SOLID keyword, to segregate these elements in a mesh of 8 node
solids for treatment as pentahedrons. Selective-reduced integration is used to prevent volumetric
locking, i.e., a constant pressure over the domain of the element is assumed.

3.7 Fully Integrated Brick Element With 48 Degr ees-of-Freedom

The forty-eight degree of freedom brick element is derived from the twenty node solid
element; see Figure 3.5, through a transformation of the nodal displacements and rotations of the
mid-side nodes [Yunus, Pawlak, and Cook, 1989]. This element has the advantage that shell
nodes can be shared with brick nodes and that the faces have just four nodes — a real advantage
for the contact-impact logic. The accuracy of this element is relatively good for problems in
linear elasticity but degrades as Poisson’s ratio approaches the incompressible limit. This can be
remedied by using incompatible modes in the element formulation, but such an approach seems
impractical for explicit computations.

The instantaneous velocity for a midside node k is given as a function of the corner node
velocities as (See Figure 3.6),

0,-6,)+>

. 1. . j Y
uk:E(ui+uj)+¥(

(9w ‘sz)
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o= ()20 (8,6, )+ 2 (66, 75)

/ 5 r

Figure 3.4. Six node Pentahedron.

where u,v,w, 8,,6,, and 6, are the translational and rotational displacements in the global

» Uxr Yy

X, Yy, and z directions. The velocity field for the twenty-node hexahedron element in terms of
the nodal velocities is:

U,
Uy
0] [4 dpthy O 0.0 0 0.0]|Y
vi=|0 0.0 ¢ @.d, 0 0.0 |[{: (3.76)
W [0 0.0 0 0.0 4 ddyl|Vy
i
WZO
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where ¢ are given by [Bathe and Wilson 1976] as,

+0,+ +0,+
4= gl_(gg 9;2 9) 4 - gﬁ_(gls 9214 Ois) @
Qs+ i+ 9 O + s + 0
¢2:gz_( : ;O 18) ¢7:g7_( : 215 19)
+0,+ + 0 +
¢3:gs_(910 9211 Gio) ¢8:(9]8_(@11t-, 9;6 On)
¢4:g4_(gn+g;+gzo) ¢ =g for j=9,..20
Ois + O + 0
¢5:gs_( 13 ;6 17)
=G(S,$)G(1,1)G(¢,¢)

G(B.f) =5 W+ BB) for f=tL p=&nd
G(B,B)=1-p% for B =0

The standard formulation for the twenty node solid element is used with the above trans-
formations. The element is integrated with a fourteen point integration rule [Cook 1974]:

[ [0 f(&m¢)dednas =
B, [ f (-b,0,0)+ f (b,0,0)+ f (0,-b,0)+...(6terms) |+ (3.78)

Ce[ f(-c,—¢,—¢)+ f (c,—¢,—¢)+ f (c.c,—c) +...(8terms) |
where

B, =0.8864265927977938 b=0.7958224257542215

C, =0.3351800554016621 c¢=0.7587869106393281

Cook reports that this rule has nearly the same accuracy as the twenty-seven point Gauss rule,
which is very costly. The difference in cost between eight point and fourteen point integration,
though significant, is necessary to eliminate the zero energy modes.
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DOF u;, v;, w; DOF u;, Vi W;, 8 i, 6 y; 65

Figure 3.5. The 20-node solid element is transformed to an 8-node solid with 6 degrees-of-
freedom per node.

A
Aw
V4
j
y-)» 0
/ k \" y
X
Wl .

Figure 3.6. A typical element edge is shown from [Yunus, Pawlak, and Cook, 1989].

3.8 Fully Integrated Tetrahedron Element With 24 Degr ees-of-Freedom

The twenty-four degree of freedom tetrahedron element is derived from the ten-node
tetrahedron element; see Figure 3.7, following the same procedure used above for the forty-eight
degree of freedom brick element [Yunus, Pawlak, and Cook, 1989]. This element has the
advantage that shell nodes can be shared with its nodes and it is compatible with the brick
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element discussed above. The accuracy of this element is relatively good-at least when compared
to the constant strain tetrahedron element. This is illustrated by the bar impact example in Figure
3.8 which compares the 12 and 24 degree of freedom tetrahedron elements. The 12 degree-of-
freedom tetrahedron displays severe volumetric locking.

In our implementation we have not strictly followed the reference. In order to prevent
locking in applications that involve incompressible behavior, selective reduced integration is
used with a total of 5 integration points. Although this is rather expensive, no zero energy modes
exist. We use the same approach in determining the rotary mass that is used in the
implementation of the shell elements.

Figures 3.9 and 3.10 show the construction of a hexahedron element from five and six
tetrahedron elements, respectively. When two sides of the adjacent bricks made from five
tetrahedrons are together, it is likely that four unique triangular segments exist. This creates a
problem in LS-PREPOST, which uses the numbering as a basis for eliminating interior polygons
prior to display. Consequently, the graphics in the post-processing phase can be considerably
slower with the degeneration in Figure 3.9. However, marginally better results may be obtained
with five tetrahedrons per hexahedron due to a better constraint count.

DOF Uj, Vi, W; DOF Uj, Vi, Wi, [

Xi’ Dyi, [zi

Figure 3.7. Twenty-four degrees of freedom tetrahedron element [Yunus, Pawlak, and Cook,
1989].
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Figure3.8. A comparison of the 12 and 24 degree-of-freedom tetrahedron elements is shown.
The 12 degree-of-freedom tetrahedron element on the top displays severe
volumetric locking.

w
w

i© 2

Figure 3.9. Construction of a hexahedron element with five tetrahedrons.
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Figure 3.10. Construction of a hexahedron element with six tetrahedrons.

3.9 Integral Difference Scheme asBasis For 2D Solids
Two dimensional solid element in LS-DYNA include:

. Plane stress 2D element
. Plane strain 2D shell element
. Axisymmetric 2D Petrov-Galerkin (area weighted) element

Axisymmetric 2D Galerkin (volume weighted) element

These elements have their origins in the integral difference method of Noh [1964] which
is also used the HEMP code developed by Wilkins [1964, 1969]. In LS-DYNA, both two
dimensional planar and axisymmetric geometries are defined in the xy plane. In axisymmetric

geometry, however, the x axis corresponds to the radial direction and the y axis becomes the

axis of symmetry. The integral difference method defines the components of the gradient of a
function F in terms of the line integral about the contour S which encloses the area A:

aniF(nUdS

dX LimA

A—0

(3.79)
F(n-j)dS
&F_[ (n-J)
Jdy  LimA

A—0

Here, n is the normal vector to S and i and j are unit vectors in the x and y directions,
respectively. See Figure 3.11.
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—’_-

Figure 3.11. The contour S encloses an area A.

In this approach the velocity gradients which define the strain rates are element centered,
and the velocities and nodal forces are node centered. See Figure 3.12.

Figure 3.12. Strain rates are element centered and nodal forces are node centered.
Noting that the normal vector n is defined as:

n:ﬂi+ﬂj (3.80)
JS JS
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Solid Elements

A

-
X

Figure 3.13. Element numbering.

and referring to Figure 3.13, we can expand the numerator in equation (3.36):

. d
J-F(n'l)dSZJ-FO—,_édSZ Fzs(ys_y2)+|:34(y4_y3)+F41(y1_y4)+|:12(y2_y1)

where F, =(F +F,)/2

(3.81)

Therefore, letting A again be the enclosed area, the following expressions are obtained:

JF — Fzs(y3_YZ)+F34(Y4_YS)+F41(Y1_y4)+Flz(yz_yl)

X A

or

JF :(Fz_F4)(y3_y1)+(y2_y4)(F3_F1)
IX 2A

Hence, the strain rates in the x and y directions become:

JF — Fzs(y3_YZ)+F34(Y4_YS)+F41(Y1_y4)+Flz(yz_yl)

X A

or

JF :(Fz_F4)(y3_y1)+(y2_y4)(F3_F1)
IX 2A

and the shear strain rate is given by:

(3.82)

(3.83a)

(3.83b)
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1(dy  ax
| 22472 3.83
E Z(aero"yj (3:83¢)

where

Y _ (%= Y)Y =)+ (Yo = ¥a) (¥~ Vi) (3.84a)
IX 2A

ﬁ:()'(2—)'(4)(X3—X1)+(X2—X4)()'(3—)'(1) (384b)
ay 2A .

The zero energy modes, called hourglass modes, as in the three dimensional solid
elements, can be a significant problem. Consider the velocity field given by: %, =%, X% =X%,,

Y:=Y,and y,=y,. Ascan be observed from Equations (3.71) and (3.72), ¢, =¢,=¢€,,=0

and the element "hourglasses" irrespective of the element geometry. In the two-dimensional
case, two modes exist versus twelve in three dimensions. The hourglass treatment for these
modes is identical to the approach used for the shell elements, which are discussed later.

In two-dimensional planar geometries for plane stress and plane strain, the finite element
method and the integral finite difference method are identical. The velocity strains are computed
for the finite element method from the equation:

&£=Bv (3.85)

where £ is the velocity strain vector, B is the strain displacement matrix, and v is the nodal
velocity vector. Equation (3.73) exactly computes the same velocity strains as the integral
difference method if

B=B(st)| (3.86)

s=t=0

The update of the nodal forces also turns out to be identical. The momentum equations in
two-dimensional planar problems are given by

1(do, do, ) .
= =2+ =X
pl dx dy
(3.87)
1 é’dxy+é’aw _y
pl dx Jdy

Referring to Figure 3.14, the integral difference method gives Equation (3.76):
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O,
@@ 11

Figure 3.14. The finite difference stencil for computing nodal forces is shown.

1 80)0( _Uxxl(y| _yIV)+O-xx2(yII _yl )+0xx3(ylll _yn )+O-xx4 (yIV_yIII) 3.88
rEre 1 (3.88)
P S (DA DA+ AT PA,)

An element wise assembly of the discretized finite difference equations is possible

leading to a finite element like finite difference program. This approach is used in the DYNA2D
program by Hallquist [1980].

In axisymmetric geometries additional terms arise that do not appear in planar problems:

i(&dxx +&0'Xy +(0'XX—0'99)}: "

pl Idx 2dy X (3.89)
1(do,, do, do,) . |

- + + =y

pl dx Jdy X

where again note that y is the axis of symmetry and x is the radial direction. The only

difference between finite element approach and the finite difference method is in the treatment of

the terms, which arise from the assumption of axisymmetry. In the finite difference method the
radial acceleration is found from the calculation:

X_l{%&(m _yIV)+O-xx2 (yn —Y )+O-xx3(ylll — Y )+O-xx4 (yIV_yIII)

2 (DA + PP+ P A+ DA ) 290)
O-xyl(xl _XIV)+O->%(XII _X|)+O-xy3(xm —X”)+O'xy4(X,V—X”|) +,B |
(PA+P A+ P A+ PA)

where S, is found by a summation over the four surrounding elements:
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; :%Z“:{M} | (3.91)

O, 1S the hoop stress, and p, is the current density.

When applying the Petrov-Galerkin finite element approach, the weighting functions are
divided by the radius, r :

1
~o' (V- b— pl)dVv
J=¢(V-o-+b-pt) -
= [ ¢'(V-0+b-pii)dA=0

where the integration is over the current geometry. This is sometimes referred to as the "Area
Galerkin" method. This approach leads to a time dependent mass vector. LS-DYNA also has an
optional Galerkin axisymmetric element, which leads to a time independent mass vector. For
structural analysis problems where pressures are low the Galerkin approach works best, but in
problems of hydrodynamics where pressures are a large fraction of the elastic modulus, the
Petrov-Galerkin approach is superior since the behavior along the axis of symmetry is correct.

The Petrov-Galerkin approach leads to equations similar to finite differences. The radial
acceleration is given by.

1 O-xxl (y| _yIV)+O-xx2 (yn -y )+O-xx3 (ym — Y )""O-xx4 (yIV _ym)

2 (A + P A+ A+ p,A) (393)
T, (X =Xy )+ 05, (X =% )+ 0, (X =%, )+, (Xy =Xy )}rﬁ :
(PA+0,A +p A+ p,A) ©

where A, is now area weighted.

1 : (Gxx _000.)'6*
fe = 3.94
g A(PA+p A +p3As+p4A4);[ X } &5

In LS-DYNA, the two-dimensional solid elements share the same constitutive
subroutines with the three-dimensional elements. The plane stress element calls the plane stress
constitutive models for shells. Similarly, the plane strain and axisymmetric elements call the full
three-dimensional constitutive models for solid elements. Slight overheads exists since the strain
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rate components £, and £, are set to zero in the two-dimensional case prior to updating the six

stress component; consequently, the additional work is related to having six stresses whereas
only four are needed. A slowdown of LS-DYNA compared with DYNA2D of fifteen percent has
been observed; however, some of the added cost is due to the internal and hourglass energy
calculations, which were not done in DYNAZ2D.

3.10 Rezoning With 2D Solid Elements

Lagrangian solution techniques generally function well for problems when element
distortions are moderate. When distortions become excessive or when material breaks up, i.e.,
simply connected regions become multi-connected, these codes break down, and an Eulerian
approach is a necessity. Between these two extremes, applications exist for which either
approach may be appropriate but Lagrangian techniques are usually preferred for speed and
accuracy. Rezoning may be used to extend the domain of application for Lagrangian codes.

Rezoning capability was added to DYNAZ2D in 1980 and to LS-DYNA in version 940. In
the current implementation the rezoning can be done interactively and used to relocate the nodal
locations within and on the boundary of parts. This method is sometimes referred to as r-
adaptive.

The rezoning is accomplished in three steps listed below:

1. Generate nodal values for all variables to be remapped

2. Rezone one or more materials either interactively or automatically with
command file.

3. Initialize remeshed regions by interpolating from nodal point values of old
mesh.

In the first step each variable is approximated globally by a summation over the number
of nodal points n:

g(r.2)=2 ®(r.2) (3.95)

where

®. set of piece wise continuous global basis functions

®. nodal point values

Given a variable to be remapped h(r, z), a least squares best fit is found by minimizing the
functional

M=[(g-h) da (3.96)
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d—H:O i=12,..,n (3.97)
dg,

This yields the set of matrix equations

Mg= f (3.98)
where

M= M=) [DD'dA (3.99)
f=> f°=> [hodA (3.100)

Lumping the mass makes the calculation of g trivial
M, => M, (3.101)

i
g _f (3.102)
i Mi :

In step 2, the interactive rezoning phase permits:
® Plotting of solution at current time

® Deletion of elements and slidelines

® Boundary modifications via dekinks, respacing nodes, etc.

® Mesh smoothing

A large number of interactive commands are available and are described in the Help package.

Current results can be displayed by
® Color fringes

® Contour lines

® Vectors plots

® Principal stress lines

® Deformed meshes and material outlines
® Profile plots

® Reaction forces

® Interface pressures along 2D contact interfaces

Three methods are available for smoothing:
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® Equipotential
® Isoparametric

® Combination of equipotential and isoparametric.

In applying the relaxation, the new nodal positions are found and given by Equation (3.103)

(3.103)

where the nodal positions relative to the node being moved are shown in the sketch in

Figure 3.15.
2 1 8
Adjusted
node
3 7
4 5 6

Figure 3.15. The stencil used to relax an interior nodal point.

The weights, &, for equipotential smoothing are

51255 :%[(X7_X3)2+(y7_y3)1
(3.104a)
&=& =2 (%) +(%- %)’
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& =6 =%[(>&—x5)(x7—><3)+(y1—y5)(y7—ys)]
(3.104b)
54 :fs :_52

and are given by
51253:‘55 :‘:{:7 =.50
52 :‘:{:4 :é:e :fs =-.25

(3.105)

for isoparametric smoothing. Since logical regularity is not assumed in the mesh, we construct
the nodal stencil for each interior node and then relax it. The nodes are iteratively moved until
convergence is obtained. In Chapter 14 of this manual, the smoothing procedures are discussed
for three-dimensional applications.

The new element centered values, h”, computed in Equation (3.106) are found by a 4
point Gauss Quadrature as illustrated in Figure 3.16.

e J' gdA

= m (3.106)

* old mesh
——new mesh

| |
M.J__{_,,_f___j___m].“_

i { l | 1
- e e

| | |

| s e aie
e

| | | | |
~Fmae s g o

Figure3.16. A four point Gauss quadrature rule over the new element is used to determine the
new element centered value.
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The Gauss point values are interpolated from the nodal values according to Equation (3.107).
This is also illustrated by Figure 3.17.

g.=.4(sut.)g, (3.107)

Figure3.17. A four point Gauss quadrature rule over the new element is used to determine the
new element centered value.
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4. BELYTSCHKO BEAM

The Belytschko beam element formulation [Belytschko et al. 1977] is part of a family of
structural finite elements, by Belytschko and other researchers that employ a ‘co-rotational
technique’ in the element formulation for treating large rotation. This section discusses the co-
rotational formulation, since the formulation is most easily described for a beam element, and
then describes the beam theory used to formulate the co-rotational beam element.

4.1 Co-rotational Technique

In any large displacement formulation, the goal is to separate the deformation
displacements from the rigid body displacements, as only the deformation displacements give
rise to strains and the associated generation of strain energy. This separation is usually
accomplished by comparing the current configuration with a reference configuration.

The current configuration is a complete description of the deformed body in its current
spatial location and orientation, giving locations of all points (nodes) comprising the body. The
reference configuration can be either the initial configuration of the body, i.e., nodal locations at
time zero, or the configuration of the body at some other state (time). Often the reference

configuration is chosen to be the previous configuration, say at time t" = t"™" — At .

The choice of the reference configuration determines the type of deformations that will be
computed: total deformations result from comparing the current configuration with the initial
configuration, while incremental deformations result from comparing with the previous
configuration.  In most time stepping (numerical) Lagrangian formulations, incremental
deformations are used because they result in significant simplifications of other algorithms,
chiefly constitutive models.

A direct comparison of the current configuration with the reference configuration does
not result in a determination of the deformation, but rather provides the total (or incremental)
displacements. We will use the unqualified term displacements to mean either the total
displacements or the incremental displacements, depending on the choice of the reference
configuration as the initial or the last state. This is perhaps most obvious if the reference
configuration is the initial configuration. The direct comparison of the current configuration with
the reference configuration yields displacements, which contain components due to deformations
and rigid body motions. The task remains of separating the deformation and rigid body
displacements. The deformations are usually found by subtracting from the displacements an
estimate of the rigid body displacements. Exact rigid body displacements are usually only known
for trivial cases where they are prescribed a priori as part of a displacement field. The
co-rotational formulations provide one such estimate of the rigid body displacements.

The co-rotational formulation uses two types of coordinate systems: one system
associated with each element, i.e., element coordinates which deform with the element, and
another associated with each node, i.e., body coordinates embedded in the nodes. (The term
‘body’ is used to avoid possible confusion from referring to these coordinates as ‘nodal’
coordinates. Also, in the more general formulation presented in [Belytschko et al., 1977], the
nodes could optionally be attached to rigid bodies. Thus the term ‘body coordinates’ refers to a
system of coordinates in a rigid body, of which a node is a special case.) These two coordinate
systems are shown in the upper portion of Figure 4.1(a).

The element coordinate system is defined to have the local x-axis X originating at node
| and terminating at node J; the local y-axis ¥ and, in three dimension, the local z-axis Z, are
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constructed normal to X. The element coordinate system (X,V,2) and associated unit vector

triad (e;, e, ;) are updated at every time step by the same technique used to construct the initial
system; thus the unit vector e, deforms with the element since it always points from node | to
node J.

The embedded body coordinate system is initially oriented along the principal inertial
axes; either the assembled nodal mass or associated rigid body inertial tensor is used in
determining the inertial principal values and directions. Although the initial orientation of the
body axes is arbitrary, the selection of a principal inertia coordinate system simplifies the
rotational equations of motion, i.e., no inertial cross product terms are present in the rotational
equations of motion. Because the body coordinates are fixed in the node, or rigid body, they
rotate and translate with the node and are updated by integrating the rotational equations of
motion, as will be described subsequently.

The unit vectors of the two coordinate systems define rotational transformations between
the global coordinate system and each respective coordinate system. These transformations
operate on vectors with global components A= (A,A,A), body coordinates components

A=(A. A, A,),and element coordinate components A=(A, A, A,) which are defined as:

Al [b. by by [A
A={A=|b, b, by | A =[2]{A} (4.1)

AJ b, b, b, ] [A

<

where b, b, b, are the global components of the body coordinate unit vectors. Similarly for
the element coordinate system:

N

Al & & e | )
A={At=le, &, e, | A =[uiA (4.2)
Al e, & e |A

where €,, €,, &, are the global components of the element coordinate unit vectors. The inverse
transformations are defined by the matrix transpose, i.e.,

{A} =[] {A} (4.3)

{A} =[u]' {A} (4.4)

since these are proper rotational transformations.
The following two examples illustrate how the element and body coordinate system are
used to separate the deformations and rigid body displacements from the displacements:
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x>

(c) Deformed Configuration

Figure4.1. Co-rotational coordinate system: (a) initial configuration, (b) rigid rotational
configuration and (c) deformed configuration.
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Rigid Rotation. First, consider a rigid body rotation of the beam element about
node |, as shown in the center of Figure 4.1(b), i.e., consider node | to be a
pinned connection. Because the beam does not deform during the rigid rotation,
the orientation of the unit vector g in the initial and rotated configuration will be
the same with respect to the body coordinates. If the body coordinate components
of the initial element unit vector € were stored, they would be identical to the

body coordinate components of the current element unit vector e,.

Deformation Rotation. Next, consider node | to be constrained against rotation,
I.e., a clamped connection. Now node J is moved, as shown in the lower portion
of Figure 4.1(c), causing the beam element to deform. The updated element unit
vector e is constructed and its body coordinate components are compared to the

body coordinate components of the original element unit vector €. Because the
body coordinate system did not rotate, as node | was constrained, the original
element unit vector and the current element unit vector are not colinear. Indeed,
the angle between these two unit vectors is the amount of rotational deformation
at node 1, i.e.,

exe =0, (4.5)

Thus the co-rotational formulation separates the deformation and rigid body deformations
by using:

» acoordinate system that deforms with the element, i.e., the element coordinates; or
» acoordinate system that rigidly rotates with the nodes, i.e., the body coordinates;

Then it compares the current orientation of the element coordinate system with the initial element
coordinate system, using the rigidly rotated body coordinate system, to determine the
deformations.

4.2 Belytschko Beam Element Formulation
The deformation displacements used in the Belytschko beam element formulation are:

d’ :{5IJ 1éxJ| 1éyl 1éyJ 'ézl 1éz.]} (4.6)
where
0, = length change
éXJI = torsional deformation
éy, ,éyJ ,ézl ,éu = bending rotational deformations

The superscript » emphasizes that these quantities are defined in the local element coordinate
system, and | and J are the nodes at the ends of the beam.
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The beam deformations, defined above in Equation (4.6), are the usual small
displacement beam deformations (see, for example, [Przemieniecki 1986]). Indeed, one
advantage of the co-rotational formulation is the ease with which existing small displacement
element formulations can be adapted to a large displacement formulation having small
deformations in the element system. Small deformation theories can be easily accommodated
because the definition of the local element coordinate system is independent of rigid body
rotations and hence deformation displacement can be defined directly.

4.2.1 Calculation of Deformations
The elongation of the beam is calculated directly from the original nodal coordinates

(X, Y, Z,) and the total displacements (u, , u, , U, ):

1
1J :W[Z(Xm Uy, +YJIuyJI +ZJ| Uz )+ uij' +U§J' +U§J'] (4.7)
where
XJ| — XJ _ XI (48)
u,, = u, — U etc. (49)

The deformation rotations are calculated using the body coordinate components of the
original element coordinate unit vector along the beam axis, i.e., €, as outlined in the previous

section. Because the body coordinate components of initial unit vector € rotate with the node,
in the deformed configuration it indicates the direction of the beam’s axis if no deformations had
occurred. Thus comparing the initial unit vector € with its current orientation g indicates the

magnitude of deformation rotations. Forming the vector cross product between €’ and ¢ :

gxe = éyez + éze3 (4.10)
where

éy is the incremental deformation about the local y axis

éz is the incremental deformation about the local Z axis

The calculation is most conveniently performed by transforming the body components of the
initial element vector into the current element coordinate system:

& S
&, t=[ul [2]48, (4.12)
&l e
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Substituting the above into Equation (4.10)

& & & o
gxeg =det| 1 0 0 |=-8e+8e=08+06. (4.12)
élo A0 A0
X y z
Thus,
6,=-8. (4.13)
6,=¢&" (4.14)

The torsional deformation rotation is calculated from the vector cross product of initial
unit vectors, from each node of the beam, that were normal to the axis of the beam, i.e., & and
& ; note that & and &, could also be used. The result from this vector cross product is then
projected onto the current axis of the beam, i.e.,

S & &
O =€ '(ézo| XézoJ ) = det é>?2| é)(/)2| ézOZI = é;/)2| ézon - é;/)uézom (4.15)

~0 ~0 ~0
€23 €2, €2;

Note that the body components of €’ and &7 are transformed into the current element
coordinate system before performing the indicated vector products.

4.2.2 Calculation of Internal Forces
There are two methods for computing the internal forces for the Belytschko beam element
formulation:

1. functional forms relating the overall response of the beam, e.g., moment-
curvature relations,
2. direct through-the-thickness integration of the stress.

Currently only the former method, as explained subsequently, is implemented; the direct
integration method is detailed in [Belytschko et al., 1977].

Axial Force. The internal axial force is calculated from the elongation of the beam & as given
by Equation (4.7), and an axial stiffness:

f, =K (4.16)
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Belytschko Beam

where

K2 = AE/I° s the axial stiffness

A s the cross sectional area of the beam

E is'Young’s Modulus

|0

is the original length of the beam

Bending Moments. The bending moments are related to the deformation rotations by

M,

M,

where Equation (4.17) is for bending in the %~z plane and Equation (4.18) is for bending in the

x-y plane. The bending constants are given by

l, = [[2 dydz

IZZ:”§/Zd9d2

12El 12El
P, = > 9= 3
GAl GAl

rhyl _ KS —4+¢y 2_¢y
_1+¢y _2—¢y 4+¢y

rﬁzl _ K? _4+¢z 2_¢z
C1+¢,|2-9, 4+,

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

Hence ¢ is the shear factor, G the shear modulus, and A, is the effective area in shear.

Torsional Moment. The torsional moment is calculated from the torsional deformation rotation

as

m, = Kt‘ngl

(4.24)
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where
Kt=—" (4.25)

3= |92 djdz (4.26)

The above forces are conjugate to the deformation displacements given previously in
Equation (4.6), i.e.,

aT :{5|J ,éle ,éyl ,éyJ ,ézl ,ézj} (4.6)

where
{dy {f}=wr (4.27)
{7 ={fo, My, My, My, M, M, (4.28)

The remaining internal force components are found from equilibrium:

A

fxl :_fo rhx| =-m,

~ N +n ~ ~

le :_w le :_fz.] (4-29)
N T + T ~ ~

f=-atMy £, =—f,

yJ |0 yl

4.2.3 Updating the Body Coordinate Unit Vectors
The body coordinate unit vectors are updated using the Newmark £ -Method [Newmark

1959] with S = 0, which is almost identical to the central difference method [Belytschko 1974].
In particular, the body component unit vectors are updated using the formula

W odn At dy
M —pl 4 At + 4.30
: . d 2 dt? (4:30)

where the superscripts refer to the time step and the subscripts refer to the three unit vectors
comprising the body coordinate triad. The time derivatives in the above equation are replaced by
their equivalent forms from vector analysis:

dd—t:j: wxb (4.31)

4.8



LS-DYNA Theory Manual Belytschko Beam

d o’

2 =0x(@xb)+(a;xh) (432

where w and « are vectors of angular velocity and accel eration, respectively, obtained from the
rotational equations of motion. With the above relations substituted into Equation (4.30), the
update formulafor the unit vectors becomes

b/t =h/ +At(a)xh)+%t2{[a)x(a)xh)+(a'i xb)]} (4.33)

To obtain the formulation for the updated components of the unit vectors, the body
coordinate system is temporarily considered to be fixed and then the dot product of Equation
(4.33) is formed with the unit vector to be updated. For example, to update the X component of

b,, the dot product of Equation (4.33), with i = 3, is formed with b, which can be simplified to
the relation

2

bt =b' -b* = Atw) +A—;(a)x'a)z' +a)) (4.34)
Similarly,

B i b = Ate) A8 () 10 43

s =0 BT = ta)x+7(a)ya)z+ax) (4.35)

b —pl . p*t = Atw) At? iy i 4.36

23 —b1b2 - wz+7(a)xa)y+az) ( )

The remaining components b)™ and b/** are found by using normality and orthogonality, where
it is assumed that the angular velocities w are small during a time step so that the quadratic terms
in the update relations can be ignored. Since b/ isaunit vector, normality provides the relation

bt = \/1 B.) - (Byt) (4.37)

Next, if it is assumed that b)™ =1, orthogonality yields

hitl | Rk itls j+H1
bs™+b,;" 0

hitl _
bZl - Bj+1
z3

(4.38)

The component b /** isthen found by enforcing normality:
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bJ* = \/1 b'“ b‘“) (4.39)

The updated components of b, and b, are defined relative to the body coordinates at time step j.

To complete the update and define the transformation matrix, Equation (4.1), at time step j+1, the
updated unit vectors by and b, are transformed to the global coordinate system, using Equation

(4.1) with [A1] defined at step j, and their vector cross product is used to form b,
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5. HUGHESLIU BEAM

The Hughes-Liu beam element formulation, based on the shell [Hughes and Liu 1981a,
1981b] discussed later, was the first beam element we implemented. It has several desirable
qualities:

* it is incrementally objective (rigid body rotations do not generate strains),
allowing for the treatment of finite strains that occur in many practical
applications;

o it is simple, which usually translates into computational efficiency and
robustness

* it is compatible with the brick elements, because the element is based on a
degenerated brick element formulation;

» it includes finite transverse shear strains. The added computations needed to
retain this strain component, compare to those for the assumption of no
transverse shear strain, are insignificant.

5.1 Geometry

The Hughes-Liu beam element is based on a degeneration of the isoparametric 8-node
solid element, an approach originated by Ahmad et al., [1970]. Recall the solid element
isoparametric mapping of the biunit cube

X(C:,:,ﬂ, g): Na (ég'nlé’)xa (51)
N, (&7,¢) = (1+§a§)(1+;7a77)(1+ 9 (5.2)

where x is an arbitrary point in the element, (&, #, () are the parametric coordinates, x, are the
global nodal coordinates of node a, and N, are the element shape functions evaluated at
node a,i.e., (£,.7,.¢,) are (£,m,¢) evaluated at node a.

In the beam geometry, &£determines the location along the axis of the beam and the
coordinate pair (7,¢) defines a point on the cross section. To degenerate the 8-node brick

geometry into the 2-node beam geometry, the four nodes at £ = —1and at & = 1are combined

into a single node with three translational and three rotational degrees of freedom. Orthogonal,
inextensible nodal fibers are defined at each node for treating the rotational degrees of freedom.
Figure 5.1 shows a schematic of the biunit cube and the beam element. The mapping of the
biunit cube into the beam element is separated into three parts:

51



Hughes-Liu Beam LS-DYNA Theory Manual

Biunit Cube

o
n
g
LY
Beam Element
Ay
g
Noda'l Fibers
1 Top Surface z Z
E A
(s
01
a1
Bottom Surface ZE
Figure 5.1 Hughes-Liu beam element.
(¢, &) =X(&)+X(8:m.8) =X(&)+ X, (5,6) + X, (5,7) (5:3)

where X denotes a position vector to a point on the reference axis of the beam, and X, and
X, are position vectors at point X on the axis that define the fiber directions through that point.
In particular,

X (5) =N, (&) X (5.4)
X, (&, m) =N, (&) X,o (m) (5.5)
X, (66 = N (&) Xea (6) (5.6)
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With this description, arbitrary points on the reference line X are interpolated by the one-
dimensional shape function N(&) operating on the global position of the two beam nodes that

define the reference axis, i.e., X,. Points off the reference axis are further interpolated by using a
one-dimensional shape function along the fiber directions, i.e., X a(77) and X, ,(¢) where

xﬂa (77) = ;7 (77) Xna (57&)
z,(1)=N, (1), +N_(77)z, (5.7b)
N, (17)= (1;77) (5.7¢)

N_(77) =(1;2") (5.7d)

X0 ($)=2:($) X (5.82)
z.({)=N.({)Z+N_({)z, (5.8b)
N, ({)= (1;§) (5.8¢)

N_(¢) =(l;2) (5.8d)

where z,(¢) and z () are “thickness functions”.
The Hughes-Liu beam formulation uses four position vectors, in addition to &£, to locate
the reference axis and define the initial fiber directions. Consider the two position vectors X,

and x, located on the top and bottom surfaces, respectively, at node a. Then

Xga:%(l—f)x;ﬁ(“ {)x, (5.9a)
g, =6 (5.90)
Xia — Xz

x;a — X

Z, :%(1—5)- (5.9¢)
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Zo, =—=(1+0)-[X - Xz (5.9d)
N L
%= 5 (1=8) %+ (1+8) X, (5.10a)
Xpa =M (5.10b)
an - an
.1 P
Zja =5 (117) X0 = %o (5.10c)
_ 1 T _
2o == 5 (L+77) X =% (5.10d)
where |- | is the Euclidean norm. The reference surface may be located at the midsurface of the

beam or offset at the outer surfaces. This capability is useful in several practical situations
involving contact surfaces, connection of beam elements to solid elements, and offsetting
elements such as for beam stiffeners in stiffened shells. The reference surfaces are located within
the beam element by specifying the value of the parameters 77and ¢ , (see lower portion of Figure
5.1). When these parameters take on the values —1 or +1, the reference axis is located on the
outer surfaces of the beam. If they are set to zero, the reference axis is at the center.

The same parametric representation used to describe the geometry of the beam elements
is used to interpolate the beam element displacements, i.e., an isoparametric representation.
Again the displacements are separated into the reference axis displacements and rotations
associated with the fiber directions:

u(&nd)=u(é)+U(&nd)=u(s)+U,(£¢)+U, (En) (5.11a)

u($)=N,(¢)u, (5.11b)

U, (&) =N, (£)U,q (1) (5.11c)
U, (£,¢)=N.(5)Usa({) (5.11d)
U, (1) = 2,2 (MU, (5.11¢)
Usa($)=2.(£)U,, (5.11f)
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where u is the displacement of a generic point, U is the displacement of a point on the reference
surface, and U is the ‘“fiber displacement’ rotations. The motion of the fibers can be interpreted
as either displacements or rotations as will be discussed.

Hughes and Liu introduced the notation that follows, and the associated schematic shown
in Figure 5.2, to describe the current deformed configuration with respect to the reference
configuration:

y=y+Y (5.12a)
y=X+0 (5.12b)
Yo =% +U, (5.12¢)
Y=X +U (5.12d)
Y, = X, + U, (5.12¢)
Y. =X,atU,, (5.12f)
Y. =X, +U,, (5.129)

reference axis in
undeformed
geometry AN
Deformed Configuration AN
Reference Surface )

Figure5.2. Schematic of deformed configuration displacements and position vectors.

In the above relations, and in Figure 5.2, the x quantities refer to the reference configuration, the
y quantities refer to the updated (deformed) configuration and the u quantities are the

displacements. The notation consistently uses a superscript bar (=) to indicate reference surface
quantities, a superscript caret (%) to indicate unit vector quantities, lower case letter for

translational displacements, and upper case letters for fiber displacements. Thus to update to the
deformed configuration, two vector quantities are needed: the reference surface displacement U
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and the associated nodal fiber displacement U . The nodal fiber displacements are defined in the
fiber coordinate system, described in the next subsection.

5.2 Fiber Coordinate System

For a beam element, the known quantities will be the displacements of the reference
surface U obtained from the translational equations of motion and the rotational quantities at
each node obtained from the rotational equations of motion. What remains to complete the
kinematics is a relation between nodal rotations and fiber displacements U. The linearized

relationships between the incremental components AU the incremental rotations are given by

N

>

AJ,, 0 Y. Y.|(ag
AJ b=, 0 Y, |{a6,t=has (5.13a)
Aljna \?,72 —A,]l 0 | AG,
Ay, 0 Yo Y.l(ag
Ai b=V, 0 Y, |{a6,t=has (5.13b)
AU B \?42 —\?41 0 | AG,

Equations (5.13) are used to transform the incremental fiber tip displacements to
rotational increments in the equations of motion. The second-order accurate rotational update
formulation due to Hughes and Winget [1980] is used to update the fiber vectors:

Y =R, (A0)Y, (5.14a)
Y =R (A0)Y, (5.14b)
then

AJ,, =Yt =Y (5.15a)
AJ,, =YL =Y. (5.15b)

where

20, +AS, )A
R (A0)=0¢, +( 1 +45,)4, (5.16a)
2D

AS; = & A6, (5.16b)
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2D :2+%(A912+A922+A932) (5.16c¢)

Here ¢; is the Kronecker deltaand g, is the permutation tensor.

5.2.1 Local Coordinate System
In addition to the above described fiber coordinate system, a local coordinate system is
needed to enforce the zero normal stress conditions transverse to the axis. The orthonormal basis

with two directions & and & normal to the axis of the beam is constructed as follows:

A 72 _71

&=t (5.17)
hASA

/ =ﬂ (5.18)
Yn1 +Y,72

From the vector cross product of these local tangents.

8=8x¢ (5.19)
and to complete this orthonormal basis, the vector

& =6x§ (5.20)
is defined. This coordinate system rigidly rotates with the deformations of the element.

The transformation of vectors from the global to the local coordinate system can now be
defined in terms of the basis vectors as

A [a e a] (A

A=1Ar=lg, &, &, | A =[q{A (5.21)
Al & & e | A

where e,, §,, &, are the global components of the local coordinate unit vectors, A is a vector in
the local coordinates, and A is the same vector in the global coordinate system.
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5.3 Strainsand Stress Update

5.3.1 Incremental Strain and Spin Tensors
The strain and spin increments are calculated from the incremental displacement gradient

) (5.22)
Y,
where Au, are the incremental displacements and y; are the deformed coordinates. The

incremental strain and spin tensors are defined as the symmetric and skew-symmetric parts,
respectively, of G; :

1

Ag; =§(G”. +G; ) (5.23)
1
Aw; ZE(GU -G;) (5.24)

The incremental spin tensor A, is used as an approximation to the rotational

contribution of the Jaumann rate of the stress tensor; in an implicit implementation [Hallquist
1981b] the more accurate Hughes-Winget [1980] transformation matrix is used, Equation (5.16),
with the incremental spin tensor for the rotational update. Here the Jaumann rate update is
approximated as

g, =0 + o A0, + oA, (5.25)

where the superscripts on the stress tensor refer to the updated (n+1) and reference (n)

configurations. This update of the stress tensor is applied before the constitutive evaluation, and
the stress and strain are stored in the global coordinate system.

5.3.2 StressUpdate
To evaluate the constitutive relation, the stresses and strain increments are rotated from

the global to the local coordinate system using the transformation defined previously in Equation
(5.21), viz.

O-iljn =0k 0w Ajn (5.26a)
Agi]! = qikAgknan (5.26Db)

where the superscript | indicates components in the local coordinate system. The stress is
updated incrementally:
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o =o' +Aal (5.27)

ij
and rotated back to the global system:

n+l

oy =0 O'L:ﬂ d, (5-28)

before computing the internal force vector.

5.3.3 Incremental Strain-Displacement Relations
After the constitutive evaluation is completed, the fully updated stresses are rotated back
to the global coordinate system. These global stresses are then used to update the internal force

vector

f," = [Blodv (5.29)

where f ™ are the internal forces at node a and B, is the strain-displacement matrix in the

global coordinate system associated with the displacements at node a. The B matrix relates six
global strain components to eighteen incremental displacements [three translational
displacements per node and the six incremental fiber tip displacements of Equation (5.15)]. Itis
convenient to partition the B matrix:

B = [B.B,] (5.30)

Each B, sub matrix is further partitioned into a portion due to strain and spin with the following
sub matrix definitions:

B, 0 0 B, 0 0 B, 0 O
0 BB OO B 0O 0 B 0
0 0 BB O 0 BB 0 0 B
B, = ’ ° ° (5.31)
B BB 0 B B 0 B B 0
0 B, B 0 BB B 0 B, B
B, 0 B B 0 B B 0 B
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where
Nai:&Na fori=1,2,3
) &M
N
B=1 (N.z.) . 3(0_);2@) for i =4,5,6 (5.32)
(N,z.,) _I(Naz) fori=7,8,9
¢a)ig &yi—6

With respect to the strain-displacement relations, note that:

» the derivative of the shape functions are taken with respect to the global coordinates;
» the B matrix is computed on the cross-section located at the mid-point of the axis;
» the resulting B matrix is a 6 x 18 matrix.

The internal force, f, given by
f/=T'f™ (5.33)

is assembled into the global right hand side internal force vector. T is defined as (also see
Equation (5.13)):

=0 n (5.34)

0 h

where | is a 3 x 3 identity matrix.

5.3.4 Spatial Integration

The integration of Equation (5.29) for the beam element is performed with one- point
integration along the axis and multiple points in the cross section. For rectangular cross sections,
a variety of choices are available as is shown in Figure 5.3. The beam has no zero energy or
locking modes.
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04 i 7 03
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ol2 SB[ 4 o7
ol o5 of o2
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Figure5.3. Integration possibilities for rectangular cross sections in the Hughes-Liu beam
element.
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Figure5.4. Specification of the nodal thickness, s and t,, for a beam with an arbitrary cross-
section.

For the user defined rule, it is necessary to specify the number of integration points and
the relative area for the total cross section:

A
A=
St
where s and t, are the beam thickness specified on either the cross section or beam element

cards. The rectangular cross-section which contains s and t, should completely contain the

cross-sectional geometry. Figure 5.4 illustrates this for a typical cross-section. In Figure 5.5, the
area is broken into twelve integration points. For each integration point, it is necessary to define
the s and t parametric coordinates, (s ,t ), of the centroid of the ith integration point and the

relative area associated with the point

_A
A=

where A is the ratio of the area of the integration point and the actual area of the cross-section,
A.
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Aj A; A3 A4l As
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Ag

A Al Ao Ay

Figure5.5. A breakdown of the cross section geometry in Figure 5.4 into twelve integration
points.
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6. WARPED BEAM ELEMENTSIN LSDYNA

6.1 Resultant Warped Beam

6.1.1 Green-Lagrange Strainsin Termsof Deformational Displacements
All quantities in this section are referred to the local element coordinate system

e, 1=1,2,3. The origin of the local system is taken at node 1, with g directed along the line of

centroids, while e,, and e, are directed along the principal axes of the cross-section.
With respect to the local system, the Green-Lagrange strain tensor can be written as:

& =6 T (6.1)
where,

. =05(u . +u;;
qJ ( 1) J,I) (62)
= 0-5uk,iuk,j

The geometric assumption of infinite in-plane rigidity implies &,, = &,; =7,; =0. Then
the non-zero strain components which contribute to the strain energy are:

_ 1(s2 2 2
En=U,+ 7(u1,1 TU + us,l)
2512 = U, t Uy F Uy Uy, Uy Uy, + U U, (6-3)

2813 = Uzt Uy + U U+ U U 5+ U Us

6.1.2 Deformational Displacements After Large Rotations
The position vectors of an arbitrary point P in the initial and current local configurations
are:

Xo=X+(g & &) X (6.4)

Xp =X+ (€ & €)| X%, (6.5)

respectively, with

(¢ & &)=(1+6+16°)(q & &) (6.6)
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where
0 -6, 6,
0= 6, 0 -6, (6.7)
-6, 6 0

and @ is the Saint-Venant warping function about the centroid C. By the transfer theorem, the
following relation holds:

D = W+ C,X; —C;X, (6.8)
where @ refers to the shear center S and ¢, and c, are the coordinates of S

Subtracting Equation (6.4) from Equation (6.5) and neglecting third-order terms, the
displacements vector of point P can be computed:

U, — X,0; + X6, + 3 X,6,0, + 1 X,0,6, + ©p
=, - x3¢9 1%, (67 +63 ) +% x,60,0, + @6,9 (6.9)
U+ %0, — 1 X, (6] + 67 ) + 1 x,6,0, 0,0

u,

u,

where U, U,, and T, are the displacements of the centroid C.

6.1.3 Green-Lagrange Strainsin terms of Centroidal Displacements and Angular Rotations
From Equations (6.3) and (6.9), a second-order approximation of the Green-Lagrange

strains can be evaluated. Neglecting term %ufl and the nonlinear strain components generated by
warping, the strain components are simplified as

& =& T XK, T XK, +%(X22 + X§)912,1 + P,
26, = Vi T W, — XK, (6.10)
283 = Y13+ D P+ Xk

with

& =Ty, +3(05, + )

K =0, +1(6,,6,-6,.,6,)

Ky =—6,,+1(6,6,,+6,,0,) + U;,6,, — Cf,
K, =6, +%(6,6,,+6,6,)-0,,6,, + 0,
Yo =l — 6, + 16,0, +U,,0,— U,,0,

(6.11)

Vis = Us,l + ‘92 + % 91‘93 - UZ,lel + U1,1‘92
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Numerical testing has shown that neglecting the nonlinear terms in the curvatures x;, x,, &, and
bending shear strains y,,, 7,; has little effect on the accuracy of the results. Therefore, Equation
(6.11) can be simplified to

K= ‘91,1! K, = _‘93,1 - Cs¢,1! K;= ‘92,1 + C2¢,1

_ o _ - (6.12)
E=Uy +%(u22,1 + usz,l)! Ye=Uy =6, 73=U,+6,

Adopting Bernoulli’s assumption (7, =7, =0) and Vlasov’s assumption ((/): 91'1), Equation
(6.10) can be rewritten as:

E11 = € + XK, + XKy + 212K + 06,

26, = (@, - %) K, (6.13)
26, = (@5 - %) K
where
r’= Xzz + ng’ K= 01,1! K, = _Uz,ll - C3‘91,11v K; = _U3,11 + C2‘91,11 (6-14)

To avoid membrane locking, &, in Equation (6.13) is reformulated as
£y = £, XK, + XK + (1P = %) i + 06, (6.15)
where
== J‘ [ % U7, + U2+ i )}dx1 (6.16)

6.1.4 Strain Energy
Assuming material is linear elastic, the strain energy can be evaluated from:

U= j:(% Ef e2dA+ %GL\[(ng )+ (2813)2]dA) dx, (6.17)

The following relations are used in integrating the previous equations:
(1) Since the reference frame is located at centroid C with e, and e, directed along the principal

axes,

X,dA=0, X,dA=0, X, X,0A=0 (6.18)
I, J, J,
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(2) Since sectorial area w refers to shear center S
[ dA=0, [ x@dA=0, [ xwdA=0 (6.19)
Integration through the cross-section gives:

2 2 2 2 2 2 2 12\ 4
jAgndA"' Aga + I22"'2 + |33K3 + Iwel,ll + Ierz’(l + ISrKSKl + |wr‘91,11’('12 +%(Irr _T)Kl (6-20)

IA[(%‘H)Z +(2813)2J dA=Ji? (6.21)
with
Izzz_[szsz |33:J-AX32dA1 lo=1p+ 15
o= [ 6r%dA 1y =] xridA 1, =] r'dA (6.22)
| :jAa)ZdA, l,, :IAa)rsz J :IA[(@3+ x2)2 +(@, - xs)z} dA
6.1.5 Displacement Field
Linear interpolation is used for axial displacement U, whereas Hermitian interpolations
are used for u,, u,, and ¢, considering the following relations used in deriving the final
expression of strain energy:

0,=-Uy;, O;=Uy, ¢=6, (6.23)

The nodal displacement field is constructed by

=N (6.24)
UZ
O l=N,d (6.25)
6

where

<

dT:[O 000 0, Oy ¢ Uy 0 0 O, 0, 06, ¢J]T (6.26)
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le[l_g e | £ . . . ]
f g - 1-f h (6.27)
N,=| - - f .—g - - - .1-f - —h
f g -1 f h
with
f=1-322+2£° g=1(&-28+&°) h=1(&-¢&7) (6.28)
Equations (6.25) and (6.27) also imply
6, =N, (6.29)
where
Ny=[ - - f, - gl - - —f, - - h] (630

6.1.6 Strain Energy in Matrix Form
The strain energy due to the average strain ¢, defined in Equation (6.16) can be

expressed in matrix form as
1 1 1 1 2
U, =3 EAl DO(Nl,ld)d&EdTL(N;l Dszl)dcj‘d} (6.31)
where
. |
D=diag| L 1, = 6.32
g( Aj (6.32)

The strain energy due to the second through fourth terms is

u, = % Bl d" [ N7, HN,, déd (6.33)
where
5, | 5,C;
H= lss = 15G |, |;=|w+|22C§+|33C22 (6.34)
|22C3 - I3302 I;
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The strain energy due to the fifth through seventh terms is
1 1 2
Uy=~Hl [ (Nd) vN, ,déd

where
’ ’
v:(_IZr _|3r Iwr)' laleax_CS|2r+CZISr

The strain energy due to the eighth and ninth terms is

0

u, :%El (hr _l_;] jl(Nsd)Ad§+%GJIE(N3d)2d§

6.1.7 Internal Nodal Force Vector
The internal force can be evaluated from

f —EA (%+%dTQ)(P+Q)+ E(R+%S+T +%VJ+GW
where

1 1 1
P:IoNlT’ldé: Q:ION;lDNZ,ldé:d RleONzT,nHNz,ndé:d

1 1
S=1[ (Nd)"NJdéo™ T =I{ (Nd)(oN,,,d)NJd&

I 2

_ o ! 3 _ 1 _q 1
V—(ln—le IO(Ngd) N;d& W—JIIO(Ngd)N;df /1_|—J'+§dTQ

With respect to the local coordinate system, there are totally eight independent components in the
nodal force vector, in correspondence to the eight nodal displacement components.

Other forces can be calculated by:

F+F; F+F,

F=-F, F, |

F=—

F4 = _Fll F9 = _Fz FlO = _Fa

(6.35)

(6.36)

(6.37)

(6.38)

(6.39)

(6.41)
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Figure 6.1. Definition of coordinates in thin-walled open section
6.2 Integrated Warped Beam

6.2.1 Kinematics
We introduce three coordinate systems that are mutually interrelated. The first coordinate
system is the orthogonal Cartesian coordinate system (X, Y, z), for which the y and zaxes lie in

the plane of the cross-section and the x-axis parallel to the longitudinal axis of the beam. The
second coordinate system is the local plate coordinate system (x,s,n) as shown in Figure 6.1,

wherein the n-axis is normal to the middle surface of a plate element, the s-axis is tangent to the
middle surface and is directed along the contour line of the cross-section. The (x,s,n) and

(%Y, ) coordinate systems are related through an angle of orientation @ as defined in Figure

40.1. The third coordinate set is the contour coordinate < along the profile of the section with its
origin at some point O on the profile section. Point P is called the pole through which the axis
parallel to the x-axis is called the pole axis. To derive the analytical model for a thin-walled
beam, the following two assumptions are made:

1. The contour of the thin wall does not deform in its own plane.
2. The shear strain y, of the middle surface is zero.

According to assumption 1, the midsurface displacement components v and w with
respect to the (x,s,n) coordinate system at a point A can be expressed in terms of displacements

V and W of the pole P in the (x,y,z) coordinate system and the rotation angle ¢, about the
pole axis

V(X,s) =V (X)cos8(s) +W(x)sin8(s) —r(s)g, (X)

. (6.55)
W(X, S) = -V (X)sin 8(s) + W(x)cosé(s) — q(s)e, (X)

These equations apply to the whole contour. The out-of-plane displacement u can now
be found from assumption 2. On the middle surface
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u + v =0 (6.56)
Js  oXx
which can be written
Jou ov . . . '
% = o =-V'(x)cos8(s) —W'(x)sin8(s) +r(s)¢', (X) (6.57)

Integrating this relation from point O to an arbitrary point on the contour yields (using t as a
dummy for <)

: - ‘V'(X)i coso(0)ct —W'<X>jsin o)t + 9, (x)ir(t)dt . 659
Noting that
SZ : g;?\s:((tt))ddtt (6.59)
we end up with
u(x, s) = u(x,0) +V'(x) y(0) +W'(x)2(0) + ¢', (XN @
—V (9¥(s) —Vi@:((s; +¢' ()(e(s) - @) (6.60)
e o

=U(X)-¢,(X)y+9¢,(X)z+¢", (X)((s) - @)

where U denotes the average out-of-plane displacement over the section, ¢, and ¢, denote the
rotation angle about the y and z axis?, respectively, @ is the sectorial area defined as

(s) = fr(t)dt (6.61)

0

and @ is the average of the sectorial area over the section.
The expression for the displacements in the (X, Y, z) coordinate system is

1 The substitution of V'(X) for @,(X) and W'(X) for — @, (X) can be seen as a conversion from an Euler-
Bernoulli kinematic assumption to that of Timoschenko.

6.8



LS-DYNA Theory Manual Warped Beam Element in LS-DYNA

ux y,2) =U(x)-4,(x)y + ¢, (x) 2+ d(x)a(y, 2)
V(X! Y, Z) =V(X) - ¢x (X)Z (662)
W(X, y,2) =W(X) + ¢, (X)y

where we have introduced ¢ to represent the twist constrained by the condition
HxX) = ¢, (X) (6.63)
and @ denotes the sectorial coordinate that is adjusted for zero average over the section.

6.2.2 Kinetics
The Kkinetic energy of the beam can be written

T =%£p{u2+v2+mf}dv (6.64)

Taking the variation of this expression leads to
ST = [ p{usu+vev+wswidv
:} p{U -,y + 8,2+ Dwl{U - 6,y + 64,2+ SdwldV +
jp ~ g, 2{{V - 6,z dV+jp W+ g,y oW + 5p,yhdv
= jp 08U +y,56, - yod, 66+ 26,69, }aV +
jv p{2,58 - yoids, + 20056, + o 555}V +
} V&V + 2,60, +WOW + y*6,5¢, dV
=Vij {U8U +VoV +WoW}aV +pl, [{4,00, + 6,06, }aV + pl , [{4,68, + 3,68, }dV +
P! y; [{9,60+ 068, }av - p1,, | {195¢5Z|+ 6,60}V +pl,, [ ﬁaﬁd\l/
| | i

from which the consistent mass matrix can be read out. Here A is the cross sectional area, |,
and |, are the second moments of area with respect to the z and y axes, respectively, I, is

the sectorial second moment and |, and | are the sectorial product moments. An

b 20) yo
approximation of this mass matrix can be made by neglecting the off diagonal components. The
diagonal components are
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Mipys = PAI/3

M = o (1, +1)1/3

Mgy =p1, 113 (6.65)
My, =pl, 113

Mgt =Pl ol 13

With E as Young’s modulus and G as the shear modulus, the strain energy can be written
1
I1 :E(ngX +Gy§y +Gy2) (6.66)

where the infinitesimal strain components are (neglecting the derivatives of sectorial area)

£ =U +9,2-p,y+dw
Yy =V 4,29, (6.67)
7xz :WI +¢>I(y+¢y

and the variation of the same can be written

5, = U +0p,2— 50,y + SV w
8,y =N —50,2— 59, (6.68)
57,, =W + 350,y + 59,

The variation of the strain energy is
al = H B0, + Gy, 0%, + nyzéyxz} av
\%
= EA[U'8U di + GA[V oV dl +GA[W'sWdl +G(1, +1,)[ 4,56, +

| | | |

El, j 8,00,dl + GAj 8,00,dl +El, j g.00.dl + GAj p.0pd +El j Jodl —

| | | | |

GA[ (V' 66, + 9,0V )dl +GA[ (W 3, +¢,0W )dl +

| |

El,, [ (9,60 +96p,)d —EL, [ (#,60 +854,)d
| |

where the stiffness matrix can be read. Again the diagonal components are
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Kins = EAI

Ky = GA/|

Kere = G(I1,, +1,)/1 6569
Ker, = El,, /1 +GAI /3

Ker, = El /1 +GAI /3

Ky = El,, /1

From the expressions of the mass and stiffness matrix, the frequencies of the most common
modes can be estimated. These are

1. The tensile and twisting modes with frequency o= ? E :
\/ Yo,
. : J3 G
2. The transverse shear and torsional mode with frequency o = T,
P

3. The bending modes with frequencies @ = 3—EZ + GA and w = B—EZ+ﬂ :

p= o ply, pepl,

Which one of these four that is the highest depends on the geometry of the beam element. In LS-
DYNA the first of these frequencies is used for calculating a stable time step. We have found no
reason for changing approach regarding this element.

6.2.3 Penalty on Twist
The twist is constrained using a penalty that is introduced in the strain energy as

PEA:, .
M, === j (¢, - )°dl (6.70)

and the corresponding variation is

o1 = PEA| (¢, - 9)(5, — 50)d . (6.71)

The diagonal of the stiffness matrix is modified as follows

Kere = G(1,, +1,,)/1+ PEA/I
Ky = El,, /1 + PEAI /3

This increases the twist mode frequency to /3|E2 + PIEA and the torsional mode to
P Pl

(6.72)
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@\/G(|W+|E)+ PEA. 6.73)

l P

Even though this gives an indication of a frequency increase we have made no
modifications on the computation of the critical time step in an explicit analysis. We have used
P =1 in the implementation. This decision may have to be reconsidered depending on the choice
of the parameter u, in the end it will come down to trial and error from numerical simulations.

6.3 Generalization to L arge Displacements

A generalization of the small displacement theory to nonlinear theory is quite
straightforward. We have used a corotational formulation where the small strains in the linear
theory are used directly as strain rates in the element system. We emphasize that the nonlinear
beam formulation is obtained by simply replacing displacements for velocities and strains with
strain rates in the previous section.

The nodal velocities for a beam element in the local system is written

v=(v! v, v, oy o, o, ¥ Vv, V. Vi o o, o, ¥ )" (6.74)
where the superscript refers to the local node number. These are obtained by transforming the
translational velocities and rotational velocities using the local to global transformation matrix

d; - The strain rate — velocity matrix in the local system can be written

—1* 0 0 0 -z Ity -I3'@ I;* 0 0 0 Iz -ty I
0 -1, 0 Iz 0 —; 0 0 I, 0 -l'z 0 —;
B. =
0 0 0 -1t -y 1 0 0 0 0 I;* Iy 1 0
2 2
o 0 0 -I* o0 0 —; 0 0 0 I o 0o -

where |, is the beam length in the reference configuration, i.e., beginning of the time step. A
corresponding matrix w.r.t. the current configuration is

-1 0 o0 0 -1z 1%y -1 I 0 0 0 1%z -1ty I'w
0 -1 0 Iz 0 -X o 0o 1" 0 -lI"z 0o -1 o
5 2 2
1o 0 -1 -1ty L 0 0 0 It Ity 1 0
2 2
a 1 o 1
o o0 o0 -l 0 0 -= 0 0 0 | 0 0o -=
i 2 2

where we use the current length of the beam. These matrices are evaluated in each integration
point (X, y) of the cross section. To compute the strain rate in the local system we simply apply
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£§=B, (6.75)
which is then used to update the local stresses o . The internal force vector is then assembled as
f=B'o. (6.76)

Finally the internal force is transformed to the global system using the transformation matrix.
To compute the stiffness matrix for implicit we neglect the geometric contribution and just apply

K =B"CB (6.77)

where C is the material tangent modulus. Again the matrix must be transformed to the global
system before used in the implicit solver.

6.13



War ped Beam Element in LS-DYNA LS-DYNA Theory Manual

6.14



LS-DYNA Theory Manual Belytschko-Lin-Tsay Shell

7. BELYTSCHKO-LIN-TSAY SHELL

The Belytschko-Lin-Tsay shell element ([Belytschko and Tsay 1981], [Belytschko et al.,
1984a]) was implemented in LS-DYNA as a computationally efficient alternative to the Hughes-
Liu shell element. For a shell element with five through thickness integration points, the
Belytschko-Lin-Tsay shell elements requires 725 mathematical operations compared to 4050
operations for the under integrated Hughes-Liu element. The selectively reduced integration
formulation of the explicit Hughes-Liu element requires 35,350 mathematical operations.
Because of its computational efficiency, the Belytschko-Lin-Tsay shell element is usually the
shell element formulation of choice. For this reason, it has become the default shell element
formulation for explicit calculations.

The Belytschko-Lin-Tsay shell element is based on a combined co-rotational and
velocity-strain formulation. The efficiency of the element is obtained from the mathematical
simplifications that result from these two kinematical assumptions. The co-rotational portion of
the formulation avoids the complexities of nonlinear mechanics by embedding a coordinate
system in the element. The choice of velocity-strain or rate-of-deformation in the formulation
facilitates the constitutive evaluation, since the conjugate stress is the physical Cauchy stress.
We closely follow the notation of Belytschko, Lin, and Tsay in the following development.

7.1 Co-rotational Coordinates

The midsurface of the quadrilateral shell element, or reference surface, is defined by the
location of the element’s four corner nodes. An embedded element coordinate system (see
Figure 7.1) that deforms with the element is defined in terms of these nodal coordinates. Then
the procedure for constructing the co-rotational coordinate system begins by calculating a unit
vector normal to the main diagonal of the element:

a_ S
6 =—" (7.1a)

B
||33||:\]S§1+5322+3323 (7.1b)
S; =3 XTIy, (7.1c)

where the superscript caret (*) is used to indicate the local (element) coordinate system.

It is desired to establish the local x axis X approximately along the element edge
between nodes 1 and 2. This definition is convenient for interpreting the element stresses, which
are defined in the local X— ¥ coordinate system. The procedure for constructing this unit vector

is to define a vector § that is nearly parallel to the vector r,,, viz.

S= r21_(r21'%)% (7.2a)
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.S
8=— (7.2b)
sl

A
X
Figure 7.1. Construction of element coordinate system is shown.
The remaining unit vector is obtained from the vector cross product
&=86x§ (7.3)

If the four nodes of the element are coplanar, then the unit vectors € and €&, are tangent
to the midplane of the shell and &, is in the fiber direction. As the element deforms, an angle
may develop between the actual fiber direction and the unit normal €. The magnitude of this
angle may be characterized as

&-f-1<o (7.4)

where f is the unit vector in the fiber direction and the magnitude of 6 depends on the
magnitude of the strains. According to Belytschko et al., for most engineering applications,
acceptable values of § are on the order of 10-2 and if the condition presented in Equation (7.4) is
met, then the difference between the rotation of the co-rotational coordinates € and the material
rotation should be small.

The global components of this co-rotational triad define a transformation matrix between
the global and local element coordinate systems. This transformation operates on vectors with

A N

global components A = (A, A, A)) and element coordinate components A:(AK,A/,AZ), and
is defined as:
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Al e e e, §< ) )
[A=1At=|e, &, e, 1A =[ul{A=[q] {A} (7.58)
Al e, & e ||A

where €,,€,, &, are the global components of the element coordinate unit vectors. The inverse
transformation is defined by the matrix transpose, i.e.,

{A=[a] (A (7.5b)

7.2 Velocity-Strain Displacement Relations

The above small rotation condition, Equation (7.4), does not restrict the magnitude of the
element’s rigid body rotations. Rather, the restriction is placed on the out-of-plane deformations,
and, thus, on the element strain. Consistent with this restriction on the magnitude of the strains,
the velocity-strain displacement relations used in the Belytschko-Lin-Tsay shell are also
restricted to small strains.

As in the Hughes-Liu shell element, the displacement of any point in the shell is
partitioned into a midsurface displacement (nodal translations) and a displacement associated
with rotations of the element’s fibers (nodal rotations). The Belytschko-Lin-Tsay shell element
uses the Mindlin [1951] theory of plates and shells to partition the velocity of any point in the
shell as:

v=v"-2e,x6 (7.6)

where v™ is the velocity of the mid-surface, € is the angular velocity vector, and Z is the
distance along the fiber direction (thickness) of the shell element. The corresponding co-
rotational components of the velocity strain (rate of deformation) are given by

6, =2 20, 7% (7.7)
b2\ 9% 9%

Substitution of Equation (7.6) into the above yields the following velocity-strain relations:

A

~ N 98
d =—%+2—2 (7.8a)

X IX

~ oo™ )
P NP (7.8b)

Yooy dy
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2§, =20 +&”1 +2 076} _ 26, (7.8¢)
Y9y o% ay IX
~ 0N~
2d =—%-6 7.8d
~ 0" -
2d=—2%+6 7.8e

The above velocity-strain relations need to be evaluated at the quadrature points within
the shell. Standard bilinear nodal interpolation is used to define the mid-surface velocity, angular
velocity, and the element’s coordinates (isoparametric representation). These interpolations
relations are given by

V=N, (&) (7.92)
6" =N, (£1)6, (7.9b)
X" =N, (£.17) (7.9¢)

where the subscript 1 is summed over all the nodes of the element and the nodal velocities are
obtained by differentiating the nodal coordinates with respect to time, i.e., v, =X, . The bilinear
shape functions are

N, = %(1—5)(1—77) (7.10a)
N, = %(1+§)(1—77) (7.10b)
N, = %(1+§)(1+77) (7.10c)
N, = %(1—6)(1“7) (7.10d)

The velocity-strains at the center of the element, i.e., at £= 0, and 7 = 0, are obtained

by substitution of the above relations into the previously defined velocity-strain displacement
relations, Equations (7.8a) and (7.8e). After some algebra, this yields

d, =B, D, +28,6, (7.11a)

74



LS-DYNA Theory Manual

Belytschko-Lin-Tsay Shell

~ ~

d, =B, 0, - 2B, 6, (7.11b)
2&xy =B, oxl + B1|{)y| + 2( BZIéyl - B, éx| ) (7.11c)
2axz =B, 0, + Nléyl (7.11d)
2d,, =B, 0, -N, éxl (7.11e)
where
IN,
= 7.12a
B =2 (7122
JN
B, =—¢ 7.12b
21 0-)9 ( )

The shape function derivatives B, are also evaluated at the center of the element, i.e., at £= 0,

and 7=0.

7.3 Stress Resultants and Nodal For ces

After suitable constitutive evaluations using the above velocity-strains, the resulting
stresses are integrated through the thickness of the shell to obtain local resultant forces and

moments. The integration formula for the resultants are
SR [ A s
Ty =] 6,02

/\R _ A A ~
maﬁ_—j 2 ,,dz

(7.13a)

(7.13b)

where the superscript, R, indicates a resultant force or moment, and the Greek subscripts
emphasize the limited range of the indices for plane stress plasticity.

The above element-centered force and moment resultants are related to the local nodal
forces and moments by invoking the principle of virtual power and integrating with a one-point
quadrature. The relations obtained in this manner are

fo=A(B, f2+8, 17 (7.14a)
f, =A(B, f+8, 17 (7.14b)
f,=Ac(B, f2+8, {7 (7.14c)
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M, = A(B2I i + B, it —E f;) (7.14d)
ﬁh =—A(B“ﬁ1§( +B,, o _g fo? j (7-148)
m, =0 (7.14f)

where A is the area of the element, and x is the shear factor from the Mindlin theory. In the
Belytschko-Lin-Tsay formulation, x is used as a penalty parameter to enforce the Kirchhoff
normality condition as the shell becomes thin.

The above local nodal forces and moments are then transformed to the global coordinate
system using the transformation relations given previously as Equation (7.5a). The global nodal
forces and moments are then appropriately summed over all the nodes and the global equations
of motion are solved for the next increment in nodal accelerations.

7.4 Hourglass Control (Belytschko-Lin-Tsay)

In part, the computational efficiency of the Belytschko-Lin-Tsay and the under integrated
Hughes-Liu shell elements are derived from their use of one-point quadrature in the plane of the
element. To suppress the hourglass deformation modes that accompany one-point quadrature,
hourglass viscosity stresses are added to the physical stresses at the local element level. The
discussion of the hourglass control that follows pertains to the Hughes-Liu and the membrane
elements as well.

The hourglass control used by Belytschko et al., extends an earlier derivation by Flanagan
and Belytschko [1981], (see also Kosloff and Frazier [1978], Belytschko and Tsay [1983]). The
hourglass shape vector, 7, , is defined as

T :hl _(hJ)A(aJ)Bau (7-15)
where
+1
-1
h= (7.16)
+1
-1

is the basis vector that generates the deformation mode that is neglected by one-point quadrature.
In Equation (7.15) and the reminder of this subsection, the Greek subscripts have a range of 2,

e.g., X, :()A(u ’)A(Z|):()A(| Y )
The hourglass shape vector then operates on the generalized displacements, in a manner
similar to Equations (7.11a - €), to produce the generalized hourglass strain rates

quqé

al

(7.17a)
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A

& =70 (7.17b)

zl

. A

Q=779 (7.17c)

al

where the superscripts B and M denote bending and membrane modes, respectively. The
corresponding hourglass stress rates are then given by

s I,Et°A

Q- o By By G (7.18a)
.o rxGt3A .

QsB = WT Bﬁl Bﬂl qf (7.18b)
. r EtA .

Q' ==—8, B, q (7.18¢)

where t is the shell thickness and the parameters, r,, r,, and r,, are generally assigned values

between 0.01 and 0.05.
Finally, the hourglass stresses, which are updated from the stress rates in the usual way,
i.e.,

Q™ =Q"+AtQ (7.19)

and the hourglass resultant forces are then

M, =7,Q; (7.20a)
fy =7,Q? (7.20b)
fal]' = Tl QaM

where the superscript H emphasizes that these are internal force contributions from the
hourglass deformations. These hourglass forces are added directly to the previously determined
local internal forces due to deformations Equations (7.14a - f). These force vectors are
orthogonalized with respect to rigid body motion.

7.5 Hourglass Control (Englemann and Whirley)

Englemann and Whirley [1991] developed an alternative hourglass control, which they
implemented in the framework of the Belytschko, Lin, and Tsay shell element. We will briefly
highlight their procedure here that has proven to be cost effective-only twenty percent more
expensive than the default control.

In the hourglass procedure, the in-plane strain field (subscript p) is decomposed into the
one point strain field plus the stabilization strain field:
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E,=E%E (7.21)
where the stabilization strain field, which is obtained from the assumed strain fields of Pian and
Sumihara [1984], is given in terms of the hourglass velocity field as

£5 =W, 0, + 2W,g, (7.22)

Here, W, and W, play the role of stabilization strain velocity operators for membrane and
bending:

flp(é‘,ﬂ) f4p(§n77)
W, =| £,°(&m) 1(Som) (7.23)
fsp(é’,ﬂ) fep(é’,ﬂ)

_f4p(§:77) flp(é‘lﬂ)
W, =| =" (&m) £ (&m) (7.24)
—fep(é’,ﬂ) fsp(é’,ﬂ)

where the terms f,°(&,77) i=1,2,...,6, are rather complicated and the reader is referred to the

reference [Englemann and Whirley, 1991].

To obtain the transverse shear assumed strain field, the procedure given in [Bathe and
Dvorkin, 1984] is used. The transverse shear strain field can again be decomposed into the one
point strain field plus the stabilization field:

£ =£2+E°2 (7.25)
that is related to the hourglass velocities by
£ =W, (7.26)

where the transverse shear stabilization strain-velocity operator W, is given by

fS , _ S S, S S
W= 1S(é‘ 7) 3915 ngn gzé‘ gzn .27
fz (5)77) 945 9477 - 925 9177

Again, the coefficients f*(&,7) and g; are defined in the reference.

In their formulation, the hourglass forces are related to the hourglass velocity field
through an incremental hourglass constitutive equation derived from an additive decomposition
of the stress into a *“one-point stress,” plus a “stabilization stress.” The integration of the
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stabilization stress gives a resultant constitutive equation relating hourglass forces to hourglass
velocities.
The in-plane and transverse stabilization stresses are updated according to:

o™ =1" + Atc CES

S STSTS

(7.28)
o™ =1" + Atc CE;

S STSTS

where the tangent matrix is the product of a matrix C, which is constant within the shell domain,
and a scalar c that is constant in the plane but may vary through the thickness.
The stabilization stresses can now be used to obtain the hourglass forces:

Q, = jzh [ Wi z5dAdz
2

Q,= jgh [ W z5dAdz (7.29)
2

Q.= I_Zh I AV\/STz'jdAdz
2

7.6 Belytschko-Wong-Chiang | mprovements

Since the Belytschko-Tsay element is based on a perfectly flat geometry, warpage is not
considered. Although this generally poses no major difficulties and provides for an efficient
element, incorrect results in the twisted beam problem, See Figure 7.2, are obtained where the
nodal points of the elements used in the discretization are not coplanar. The Hughes-Liu shell
element considers non-planar geometry and gives good results on the twisted beam, but is
relatively expensive. The effect of neglecting warpage in a typical application cannot be
predicted beforehand and may lead to less than accurate results, but the latter is only speculation
and is difficult to verify in practice. Obviously, it would be better to use shells that consider
warpage if the added costs are reasonable and if this unknown effect is eliminated. In this section
we briefly describe the simple and computationally inexpensive modifications necessary in the
Belytschko-Tsay shell to include the warping stiffness. The improved transverse shear treatment
is also described which is necessary for the element to pass the Kirchhoff patch test. Readers are
directed to the references [Belytschko, Wong, and Chang 1989, 1992] for an in depth theoretical
background.
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Twisted beam problem Displacement-time history
30
L = 12 e
b = 14 28 Belytschko -~ Tsai
t = .32 "
twist = 90 deg. 2 20 Hughes-Liu
E = 29000000 g e Belytschko-Wong-Chiang
v = .22 o
£ 12
3
> 8
e s
0

0 5 10 ‘l'ﬁ 18
time [ms]

Figure 7.2. The twisted beam problem fails with the Belytschko-Tsay shell element.

In order to include warpage in the formulation it is convenient to define nodal fiber
vectors as shown in Figure 7.3. The geometry is interpolated over the surface of the shell from:

X:Xm+5p:(x|+é7p|)N| (98177) (7.30)
where
F_¢h
£=5

and ¢ is a parametric coordinate which varies between -1 to +1.

Figure 7.3. Nodal fiber vectors p1, p2, and pz, where h is the thickness.
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The in plane strain components are given by:

dxx = bx| Xl 5(b:<:|vx| +b pxl ) (731a)
d,, =b,V, +£ (b5, +by, b, ) (7.31b)
1, F (e
dxy :be| Vi +by| " g(bx| vy +b, 1 Py +byI Vy +b pxl) (7.31c)

The coupling terms are come in through b : which is defined in terms of the components of the
fiber vectors as:

by _ { Py2 = Pya Pyzs =Py Pya— P2 Py~ pys} (7.32)
b)cfl Pi2 = Psa Pgs = P Pas = P2 Ps — Pss

For a flat geometry the normal vectors are identical and no coupling can occur. Two methods are
used by Belytschko for computing b} and the reader is referred to his papers for the details.

Both methods have been tested in LS-DYNA and comparable results were obtained.
The transverse shear strain components are given as

-N, (£,7)86, (7.33a)
=-N, ()8, (7.33b)
where the nodal rotational components are defined as:

0, =(6 )0, +(e &) (7.342)

6, =(€ )6, +(eh &) 0y (7.34b)

The rotation &' comes from the nodal projection

6, (9' +6), )+

=3 Dy —Dy) (7.35)

1
LlJ (

where the subscript n refers to the normal component of side | as seen in Figure 7.3 and L" is
the length of side 1J .
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P <>

Figure 7.4. Vector and edge definitions for computing the transverse shear strain components.
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8. TRIANGULAR SHELLS

8.1 C° Triangular Shell

The C° shell element due to Kennedy, Belytschko, and Lin [1986] has been implemented
as a computationally efficient triangular element complement to the Belytschko-Lin-Tsay
quadrilateral shell element ([Belytschko and Tsay 1981], [Belytschko et al., 1984a]). For a shell
element with five through-the-thickness integration points, the element requires 649
mathematical operations (the Belytschko-Lin-Tsay quadrilateral shell element requires 725
mathematical operations) compared to 1417 operations for the Marchertas-Belytschko triangular
shell [Marchertas and Belytschko 1974] (referred to as the BCIZ [Bazeley, Cheung, Irons, and
Zienkiewicz 1965] triangular shell element in the DYNA3D user’s manual).

Triangular shell elements are offered as optional elements primarily for compatibility
with local user grid generation and refinement software. Many computer aided design (CAD)
and computer aided manufacturing (CAM) packages include finite element mesh generators, and
most of these mesh generators use triangular elements in the discretization. Similarly, automatic
mesh refinement algorithms are typically based on triangular element discretization. Also,
triangular shell element formulations are not subject to zero energy modes inherent in
quadrilateral element formulations.

The triangular shell element’s origins are based on the work of Belytschko et al.,
[Belytschko, Stolarski, and Carpenter 1984b] where the linear performance of the shell was
demonstrated.  Because the triangular shell element formulations parallels closely the
formulation of the Belytschko-Lin-Tsay quadrilateral shell element presented in the previous
section (Section 7), the following discussion is limited to items related specifically to the
triangular shell element.

8.1.1 Co-rotational Coordinates

The mid-surface of the triangular shell element, or reference surface, is defined by the
location of the element’s three nodes. An embedded element coordinate system (see Figure 8.1)
that deforms with the element is defined in terms of these nodal coordinates. The procedure for
constructing the co-rotational coordinate system is simpler than the corresponding procedure for
the quadrilateral, because the three nodes of the triangular element are guaranteed coplanar.

The local x-axis X is directed from node 1 to 2. The element’s normal axis Z is defined
by the vector cross product of a vector along X with a vector constructed from node 1 to node 3.

The local y-axis ¥ is defined by a unit vector cross product of €, with &, which are the unit

vectors in the Z directions, respectively. As in the case of the quadrilateral element, this triad of
co-rotational unit vectors defines a transformation between the global and local element
coordinate systems (see Equations (7.5 a, b)).

8.1.2 Velocity-Strain Relations

As in the Belytschko-Lin-Tsay quadrilateral shell element, the displacement of any point
in the shell is partitioned into a mid-surface displacement (nodal translations) and a displacement
associated with rotations of the element’s fibers (nodal rotations). The Kennedy-Belytschko-Lin
triangular shell element also uses the Mindlin [Mindlin 1951] theory of plates and shells to
partition the velocity of any point in the shell (recall Equation (7.6)):
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v=v"-2ex6 (8.1)

where v™ is the velocity of the mid-surface, € is the angular velocity vector, and Z is the
distance along the fiber direction (thickness) of the shell element. The corresponding co-
rotational components of the velocity strain (rate of deformation) were given previously in
Equation (7.11 a - e).

N>

>

Figure8.1. Local element coordinate system for CO shell element.

Standard linear nodal interpolation is used to define the midsurface velocity, angular
velocity, and the element’s coordinates (isoparametric representation). These interpolation
functions are the area coordinates used in triangular element formulations. Substitution of the
nodally interpolated velocity fields into the velocity-strain relations (see Belytschko et al., for
details), leads to strain rate-velocity relations of the form

d=BV (8.2)

where d are the velocity strains (strain rates), the elements of B are derivatives of the nodal
interpolation functions, and the v are the nodal velocities and angular velocities.

It is convenient to partition the velocity strains and the B matrix into membrane and
bending contributions. The membrane relations are given by

le
d, |" 9, o 9 0 0 o]
d, :)A(ZlA 0 %% 0 % 0 % ZXZ (8.3)
2d,)  Plen s wow & o]

Dy

or
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d" =B,V (8.4)
The bending relations are given by
x1
- R R éyl
X . 0 -y 0 ¥ 0115
~ - ~ ~ A~ A x2
y ==%A X% 0 X 0 -% 0 5 (8.5)
2 Axy : Y, % =Y % 0 % Ay2
x3
0,
or
"(*.M -B édef (8'6)
- M

The local element velocity strains are then obtained by combining the above two
relations:

d, | | d, 2,
d, t=4d, ¢ -2y &, t=d" -2 (8.7)
2d,| |2d, 2Ky

yz
_92 A3(2)22+)A(3) 9; 93(3;(2_;(3) )A(zAs
B (%-2%)  K-% -9 (R%+%) X(X-2%) 3%y %(2%-%)

A~ def
x1
0,
e (8.8)
0,
X3
0,

or
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A

ds =B * (8.9)

All of the above velocity-strain relations have been simplified by using one-point quadrature.
In the above relations, the angular velocities 6 ' are the deformation component of the

angular velocity 6 obtained by subtracting the portion of the angular velocity due to rigid body
rotation, i.e.,

% =69 (8.10)

The two components of the rigid body angular velocity are given by

A

i 0 —v,
o - Zl>‘<2 ) (8.11a)
éxrig - (vzs — Uzl) X;(—y(vzz - UZl) . (8.11b)
23

The first of the above two relations is obtained by considering the angular velocity of the local
x-axis about the local y-axis. Referring to Figure 8.1, by construction nodes 1 and 2 lie on the
local x-axis and the distance between the nodes is X, i.e., the X distance from node 2 to the local

coordinate origin at node 1. Thus the difference in the nodal z velocities divided by the distance
between the nodes is an average measure of the rigid body rotation rate about the local y-axis.

The second relation is conceptually identical, but is implemented in a slightly different
manner due to the arbitrary location of node 3 in the local coordinate system. Consider the two
local element configurations shown in Figure 8.2. For the leftmost configuration, where node 3
is the local y-axis, the rigid body rotation rate about the local x-axis is given by

03‘@1

08 == (8.12)
3
and for the rightmost configuration the same rotation rate is given by
i ﬁz — ﬁz
ex—gright == ~ 2 (813)

3

Although both of these relations yield the average rigid body rotation rate, the selection of the
correct relation depends on the configuration of the element, i.e., on the location of node 3.
Since every element in the mesh could have a configuration that is different in general from
either of the two configurations shown in Figure 8.2, a more robust relation is needed to
determine the average rigid body rotation rate about the local x-axis. In most typical grids,
node 3 will be located somewhere between the two configurations shown in Figure 8.2. Thus a
linear interpolation between these two rigid body rotation rates was devised using the distance X,

as the interpolant:
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é;ig — é;l_glen (1_%} + é;i_gright (%j (8.14)

2 2

Substitution of Equations (8.12) and (8.13) into (8.14) and simplifying produces the relations
given previously as Equation (8.11b).

Figure8.2. Element configurations with node 3 aligned with node 1 (left) and node 3 aligned
with node 2 (right).

8.1.3 Stress Resultants and Nodal Forces

After suitable constitutive evaluation using the above velocity strains, the resulting local
stresses are integrated through the thickness of the shell to obtain local resultant forces and
moments. The integration formulae for the resultants are

Ty =[ 6,02 (8.15a)

i, =—[ 26,,d 2 (8.15b)
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where the superscript R indicates a resultant force or moment and the Greek subscripts
emphasize the limited range of the indices for plane stress plasticity.

The above element-centered force and moment resultant are related to the local nodal
forces and moments by invoking the principle of virtual power and performing a one-point
quadrature. The relations obtained in this manner are

fa
i fr
fx2 TJ)ER
A =ABT £ (8.16a)
f,, y
fx3 Y
flq
m,
M, R
T L
2= AB) MY L+ ABI L (8.16D)
M. - f
M,
My,

where A is the area of the element (2A=X,¥,).

The remaining nodal forces, the Z component of the force (fz3, 1?22, fﬂ), are determined

by successively solving the following equilibration equations

My + M, + M + Y fzs =0 (8.17a)
fy, + 10y, + My, % f - %, 1, =0 (8.17b)
le + fzz + fzS =0 (8.17¢)

which represent moment equilibrium about the local x-axis, moment equilibrium about the local
y-axis, and force equilibrium in the local z-direction, respectively.
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8.2 Marchertas-Belytschko Triangular Shell

The Marchertas-Belytschko [1974] triangular shell element, or the BCIZ triangular shell
element as it is referred to in the LS-DYNA user’s manual, was developed in the same time
period as the Belytschko beam element [Belytschko, Schwer, and Klein, 1977], see Section 4,
forming the first generation of co-rotational structural elements developed by Belytschko and co-
workers.  This triangular shell element became the first triangular shell implemented in
DYNAZ3D. Although the Marchertas-Belytschko shell element is relatively expensive, i.e., the
C° triangular shell element with five through-the-thickness integration points requires 649
mathematical operations compared to 1,417 operations for the Marchertas-Belytschko triangular
shell, it is maintained in LS-DYNA for compatibility with earlier user models. However, as the
LS-DYNA user community moves to application of the more efficient shell element
formulations, the use of the Marchertas-Belytschko triangular shell element will decrease.

As mentioned above, the Marchertas-Belytschko triangular shell has a common co-
rotational formulation origin with the Belytschko beam element. The interested reader is referred
to the beam element description, see Section 4, for details on the co-rotational formulation. In
the next subsection a discussion of how the local element coordinate system is identical for the
triangular shell and beam elements. The remaining subsections discuss the triangular element’s
displacement interpolants, the strain displacement relations, and calculations of the element
nodal forces. In the report [1974], much greater detail is provided.

8.2.1 Element Coordinates

Figure 8.3(a) shows the element coordinate system, (X, ¥, 2) originating at Node 1, for the
Marchertas-Belytschko triangular shell. The element coordinate system is associated with a triad
of unit vectors (e, e,, e,) the components of which form a transformation matrix between the

global and local coordinate systems for vector quantities. The nodal or body coordinate system
unit vectors (b, b,, b,) are defined at each node and are used to define the rotational

deformations in the element, see Section 8.4.4.
The unit normal to the shell element e, is formed from the vector cross product

g =1y xly (8.18)

where |,, and I, are unit vectors originating at Node 1 and pointing towards Nodes 2 and 3

respectively, see Figure 8.3(b).
Next a unit vector g, see Figure 8.3(b), is assumed to be in the plane of the triangular

element with its origin at Node 1 and forming an angle £ with the element side between Nodes
1 and 2, i.e., the vector |,,. The direction cosines of this unit vector are represented by the
symbols (g,, 9,, 9,). Since g is the unit vector, its direction cosines will satisfy the equation

97 +9;+9; =1 (8.19)
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@) Element and Body Coordinates

(b) Construction of Element Coordinates

Figure 8.3. Construction of local element coordinate system.
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Also, since g and e, are orthogonal unit vectors, their vector dot product must satisfy the

equation

e,0, + 6,0, + 8,0, = 0 (8.20)

In addition, the vector dot product of the co-planar unit vectors g and |,, satisfies the equation

(8.21)

I21xgx + I21ygy + Ilegz = COSﬂ

where (I, , + 1,,,, + 1,,,) are the direction cosines of 1,

Solving this system of three simultaneous equation, i.e., Equation (8.19), (8.20), and
(8.21), for the direction cosines of the unit vector g yields

O = I21x COSﬁ + (e3y|21z - e32|21y) sin ﬁ
gy = I21y COSﬂ + (e32|21x - e3x|21z)8in ﬂ (822)
g, = I21z COSﬂ + (%xIZly - e3y|21x) sin ﬂ

These equations provide the direction cosines for any vector in the plane of the triangular
element that is oriented at an angle S from the element side between Nodes 1 and 2. Thus the
unit vector components of g, and e, are obtained by setting f= /2 and = (7 + )2 in
Equation (8.22), respectively. The angle « is obtained from the vector dot product of the unit
vectors 1,, and |,;,

cosor =1, |y (8.23)

8.2.2 Displacement Interpolation

As with the other large displacement and small deformation co-rotational element
formulations, the nodal displacements are separated into rigid body and deformation
displacements,

u= urigid + udef (824)
where the rigid body displacements are defined by the motion of the local element coordinate

system, i.e., the co-rotational coordinates, and the deformation displacement are defined with
respect to the co-rotational coordinates. The deformation displacement are defined by

def

a 4
0 Zm 0
A S A0 P (8.25)
. ] 8
u, ¢ |
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where
{5}T ={0y, 0y 0y} (8.26)

are the edge elongations and

N

{61={6,6,,6,,6,,6,,6,,] (8.27)

are the local nodal rotation with respect to the co-rotational coordinates.
The matrices ¢, ¢, and ¢! are the membrane and flexural interpolation functions,

respectively. The element’s membrane deformation is defined in terms of the edge elongations.
Marchertas and Belytschko adapted this idea from Argyris et al., [1964], where incremental
displacements are used, by modifying the relations for total displacements,

2 2 2
2(inujix + yjiujiy + Zjiujiz)+ ujix +ujiy + ujiz
8= ; (8.28)
I ij+Iij

where x; = x;-x , etc.

The non-conforming shape functions used for interpolating the flexural deformations, ¢,
were originally derived by Bazeley, Cheung, Irons, and Zienkiewicz [1965]; hence the LS-
DYNA reference to the BCIZ element. Explicit expressions for ¢, are quite tedious and are not

given here. The interested reader is referred to Appendix G in the original work of Marchertas
and Belytschko [1974].

The local nodal rotations, which are interpolated by these flexural shape functions, are
defined in a manner similar to those used in the Belytschko beam element. The current
components of the original element normal are obtained from the relation

& =1 78! (8.29)

where ¢ and A are the current transformations between the global coordinate system and the
element (local) and body coordinate system, respectively. The vector €, is the original element

unit normal expressed in the body coordinate system. The vector cross product between this
current-original unit normal and the current unit normal,

exe =0g+0,e (8.30)

define the local nodal rotations as
6, =-8&, (8.31)
6, = @Ox (8.32)
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Note that at each node the corresponding A transformation matrix is used in Equation (8.29).

8.2.3 Strain-Displacement Relations
Marchertas-Belytschko impose the usual Kirchhoff assumptions that normals to the

midplane of the element remain straight and normal, to obtain

Ju 2%
_ 9,0, 8.33
S IX Zo”x2 (8.332)
a 2
A PLAL (8.33b)
ay ady
2
Mo, My _ 9 O (8.33¢)

2e = —
S &y+&x Ixdy

where it is understood that all quantities refer to the local element coordinate system.
Substitution of Equations (8.25) into the above strain-displacement relations yields

{e}z[Em]{é}—z[Ef]{é} (8.34)

where
{e} ={&.. &, 26} (8.35)

with
(229

[E"]= Wy (8.36a)

and

[E']= 7, (8.36h)
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Again, the interested reader is referred to Appendices F and G in the original work of Marchertas
and Belytschko [1974] for explicit expressions of the above two matrices.

8.2.4 Nodal Force Calculations
The local element forces and moments are found by integrating the local element stresses
through the thickness of the element. The local nodal forces are given by

f=[[E"] 6av (8.37)
where

fr :{ fiz fos f31} (8.38)

6'={0,0,0,] (8.39)

where the side forces and stresses are understood to all be in the local convected coordinate
system.
Similarly, the local moments are given by

m=-[z[E'] 6av (8.40)
where
M= {m,m,m,m, m,m | (8.41)

The through-the-thickness integration portions of the above local force and moment integrals are
usually performed with a 3- or 5-point trapezoidal integration. A three-point inplane integration
is also used,; it is inpart this three-point inplane integration that increases the operation count for
this element over the C° shell, which used one-point inplane integration with hourglass
stabilization.

The remaining transverse nodal forces are obtained from element equilibrium
considerations. Moment equilibrium requires

f % ][R+
A22 :i|: AXS Y\S :|{rr&x rr'z rrb } (842)
f | 2ALX% =Y, (M, +M, +m,

where A is the area of the element. Next transverse force equilibrium provides

(8.43)

The corresponding global components of the nodal forces are obtained from the following
transformation
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fix fi X + Ui X U R Ex
iy ([~ |J Yi T Uy +- Yik Uy ¢+ fi, &y (8.44)
i ik
fiz ] Zj + l"Iijz Zik + l"Iikz %z

Finally, the local moments are transformed to the body coordinates using the relation

mx mx
m, p=ATu i, (8.45)
mZ mz
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9. TYPE 16: FULLY INTEGRATED SHELL

9.1 Introduction
Shell type 16 in LS-DYNA is a fully integrated shell with assumed strain interpolants

used to alleviate locking and enhance in-plane bending behavior, see Engelmann, Whirley, and
Goudreau [1989]; Simo and Hughes [1986]; Pian and Sumihara [1985]. It uses a local element
coordinate system that rotates with the material to account for rigid body motion and
automatically satisfies frame invariance of the constitutive relations. The local element
coordinate system is similar to the one used for the Belytschko-Tsay element, where the the first
two basis vectors are tangent to the shell midsurface at the center of the element, and the third
basis vector is in the normal direction of this surface and initially coincident with the fiber
vectors.

9.2 Hu-Washizu Three Field Principle
The element is derived starting from the Hu-Washizu three-field principle stated as

ext

o:an(v,D,a):j(sf):c(D)dmj(S[a:(D(v)—f))]dg—(sp +6R,  (9.2)

where Vv is the velocity, D is the assumed strain rate, ¢ is the assumed stress, ¢ denotes the

constitutive update as a function of the assumed strain rate, and D is the strain rate computed
from the velocity field. 0B, and 0P, are the virtual power contributions from the inertial and

Xt
external forces, respectively, and Q denotes the domain of the shell element. The contribution
from the internal forces can be decomposed in the in-plane and transverse shear parts as

0=0R}+0P,+H?+H*-6P,, +JR,,

int int ext

where
SRE =[6DP: 6°(D)dQ (9.2)
SP;, =k 6D°: 6%(D)dQ (9.3)
Hp:ja[ap:(Dp(v)—Dp)]dQ (9.4)
HS:ij[&S:(DS(v)—DS)]dQ. (9.5)

Here x is the shear correction factor and the superscripts mean that only the in-plane
components (p) or transverse shear (S) components are treated.
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9.3 In-plane Assumed Strain Field
Using the standard isoparametric interpolation for the four-node quadrilateral element, the
in-plane strain rate can be written

D" =[B,, ZBb]{;z} (9.6)

where B, and B, are strain-displacement matrices for membrane and bending modes,

respectively, z is the through thickness coordinate and v and " are the nodal (in-plane)
translational and rotational velocities, respectively.

To derive the in-plane assumed strain field, the interpolants for the assumed stress and strain
rates are chosen as

o’ =[S SP]{S'“} (9.7)

S
_ e
DP=C?sSP sP|| ™ 9.8
e 63
where
100 af e
sP=[0 1 0 a¥ b (9.9)
0 0 1 aaf bbé
and
- 1
E=¢—=|4dQ (9.10)
ol
1
n=n-—|ndQ. (9.11)
ol

Furthermore, C is the plane stress constitutive matrix and & and 7 are the isoparametric
coordinates. The coefficients a and by are defined through

Jozl{ai bl} (9.12)
4la, b
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where J, is the area jacobian matrix from the isoparametric to physical domain computed at the
element center.

Inserting the expressions for the strain rate and assumed stress and strain rate into the expression
for H® and requiring H" =0 for arbitrary s, s,, €, and e, yields the following expression
for the assumed strain rate in terms of the nodal velocities

— — — Vp
D°=[B, 2B, L.’p} (9.13)
where
B, =C'SPEB,, (9.14)
B, =C'SPEB, (9.15)
and
E=[SCsSPdQ (9.16)
émi [s7B,do (9.17)
B, = fSpTBbdQ. (9.18)
o

9.4 Transverse Shear Assumed Strain Field
The transverse shear strain is the Bathe-Dvorkin [1984] assumed natural strain field and
is derived as follows.

D

C
Figure 9.1. Midside locations of isoparametric strain rates

Using the standard isoparametric interpolation for the four-node quadrilateral element, the
transverse shear strain rate can be written
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s _ Vz
D° =B, L}p} (9.19)

where B, is the corresponding strain-displacement matrix and v, and " are the nodal out-of-
plane translational and in-plane rotational velocities, respectively.

The assumed strain rate is defined as

NS D Vz
D° =B, L’p} (9.20)
where
B, =JTE[STIB Q. (9.21)
Q

Here J is the area jacobian matrix from the isoparametric domain to the physical domain,

E:l{l‘f 1+ 0 0 } ©.22)
2] 0 0 1-n 1l+ng
o {5(77)6(1%) S(moL-¢) 0 0 } 9.23)
0 0 6(5)o+m) 6(5)o(-m)
and ¢ is the Dirac delta function. Defining the assumed stress as
6" =JS’s (9.24)

yields H®=0 regardless of the choice of s and thus a B-bar expression for the assumed
transverse strain rates is obtained as given above. The result is equivalent to defining the
isoparametric assumed shear strain rates by interpolating the corresponding strain rates from the
mid-side points A, B, C and D shown in Figure 9.1.

9.5 Rigid Body Motion

For the in-plane assumed strain field, a rigid body motion may induce a nonzero strain
rate. The expression for the in-plane strain rate for a rigid body motion is

D'=B.0 (9.25)
where

B =wB_R. (9.26)
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Here w represents the amount of warping for the geometry, 6 are the nodal rigid body rotational
velocities and R is a matrix that rotates each nodal velocity 90 degrees in the plane. The
objective in-plane strain rate is obtained by subtracting this contribution from the assumed strain
rate defined in the previous sections.

9.6 Belytschko-Leviathan Projection

For warped configurations and since the geometry of the current shell element is flat,
extremely flexible behavior can be expected for some modes of deformation. Following
[Belytschko and Leviathan 1994], a 7-mode projection matrix P (3 rigid body rotation modes
and 4 nodal drill rotation modes) is constructed used for projecting out these zero energy modes.
The explicit formula for the projection matrix is given by

P=I-R(R'R)'R" (9.27)
where R is a matrix where each column corresponds to the nodal velocity of a zero energy

mode. This projection matrix operates on the nodal velocities prior to computing the strain rates,
and also on the resulting internal force vector to maintain invariance of the internal power.
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10. HUGHES-LIU SHELL

The Hughes-Liu shell element formulation ([Hughes and Liu 1981a, b], [Hughes et al.,
1981], [Hallquist et al., 1985]) was the first shell element implemented in LS-DYNA. It was
selected from among a substantial body of shell element literature because the element
formulation has several desirable qualities:

* it is incrementally objective (rigid body rotations do not generate strains), allowing
for the treatment of finite strains that occur in many practical applications;

» itissimple, which usually translates into computational efficiency and robustness;

* it is compatible with brick elements, because the element is based on a degenerated
brick element formulation. This compatibility allows many of the efficient and
effective techniques developed for the DYNAS3D brick elements to be used with this
shell element;

» itincludes finite transverse shear strains;

» a through-the-thickness thinning option (see [Hughes and Carnoy 1981]) is also
available when needed in some shell element applications.

The remainder of this section reviews the Hughes-Liu shell element (referred to by
Hughes and Liu as the Ul element) which is a four-node shell with uniformly reduced
integration, and summarizes the modifications to their theory as it is implemented in LS-DYNA.
A detailed discussion of these modifications, as well as those associated with the implementation
of the Hughes-Liu shell element in NIKE3D, are presented in an article by Hallquist and Benson
[1986].

10.1 Geometry

The Hughes-Liu shell element is based on a degeneration of the standard 8-node brick
element formulation, an approach originated by Ahmad et al. [1970]. Recall from the discussion
of the solid elements the isoparametric mapping of the biunit cube:

X(&.7.8) =N, (8. 7.0)%, (10.1)
Na (5,77, é’) — (1+§a§)(1+gan)(l+§ag) (102)

where X is an arbitrary point in the element, (&, n7, {') are the parametric coordinates, X, are the
global nodal coordinates of node a, and N, are the element shape functions evaluated at node

a,ie, (&,n.,¢,) are (&, n, ) evaluated at node a.
In the shell geometry, planes of constant ¢ will define the lamina or layers of the shell
and fibers are defined by through-the-thickness lines when both & and 7 are constant (usually

only defined at the nodes and thus referred to as ‘nodal fibers’). To degenerate the 8-node brick
geometry into the 4-node shell geometry, the nodal pairs in the ¢ direction (through the shell

thickness) are combined into a single node, for the translation degrees of freedom, and an
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inextensible nodal fiber for the rotational degrees of freedom. Figure 10.1 shows a schematic of
the bi-unit cube and the shell element.
The mapping of the bi-unit cube into the shell element is separated into two parts

x(&m.8)=%X(&m)+X(.1.4) (10.3)

where X denotes a position vector to a point on the reference surface of the shell and X is a
position vector, based at point X on the reference, that defines the fiber direction through that
point. In particular, if we consider one of the four nodes which define the reference surface, then

X(&m) =N, (£.7)X, (10.4)
X(&m¢)=N,(&m) X, (S) (10.5)

Biunit Cube

Nodal Fiber

Top Surface  Z¥

+1—T

g

0 —- Reference
Surface

N

Bottom Surface Z~

Figure10.1. Mapping of the biunit cube into the Hughes-Liu shell element and nodal fiber
nomenclature.
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With this description, arbitrary points on the reference surface X are interpolated by the
two-dimensional shape function N (&,7) operating on the global position of the four shell nodes

that define the reference surfaces, i.e., X,. Points off the reference surface are further

interpolated by using a one-dimensional shape function along the fiber direction, i.e., X,({),
where

X.($)=2z($) X, (10.6a)
2,(O)=N.(O)Z+N.(¢) % (10.66)
N+(§’):(1;;) (10.6¢)
N_(¢) =@ (10.6d)

As shown in the lower portion of Figure 10.1, )Za IS a unit vector in the fiber direction
and z(¢{) is a thickness function. (Thickness changes (see [Hughes and Carnoy 1981]) are

accounted for by explicitly adjusting the fiber lengths at the completion of a time step based on
the amount of straining in the fiber direction. Updates of the fiber lengths always lag one time
step behind other kinematical quantities.)

The reference surface may be located at the mid-surface of the shell or at either of the
shell’s outer surfaces. This capability is useful in several practical situations involving contact
surfaces, connection of shell elements to solid elements, and offsetting elements such as
stiffeners in stiffened shells. The reference surface is located within the shell element by
specifying the value of the parameter ¢ (see lower portion of Figure 10.1). When ¢ =-1, 0, +1,
the reference surface is located at the bottom, middle, and top surface of the shell, respectively.

The Hughes-Liu formulation uses two position vectors, in addition to ¢, to locate the
reference surface and define the initial fiber direction. The two position vectors x; and x; are

located on the top and bottom surfaces, respectively, at node a. From these data the following
are obtained:

Xa=%(1—f)x;+(l+f)x; (10.7a)
X, =M (10.7b)

h,
Z=(1-0)h (10.7¢)
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15
z :_E(l+ {)h, (10.7d)
X —x| (10.7¢)

o
I

where ||| is the Euclidean norm.

10.2 Kinematics

The same parametric representation used to describe the geometry of the shell element,
i.e., reference surface and fiber vector interpolation, are used to interpolate the shell element
displacement, i.e., an isoparametric representation. Again, the displacements are separated into
the reference surface displacements and rotations associated with the fiber direction:

u(én&)=u(én)+U(¢n.<) (10.8a)
u(&n)=N,(&n)a, (10.8b)
U(&m¢)=N,(&mVU,. (<) (10.8¢)
U.(¢)=2z ()4, (10.8d)

where u is the displacement of a generic point; U is the displacement of a point on the reference
surface, and U is the “fiber displacement’ rotations; the motion of the fibers can be interpreted as
either displacements or rotations as will be discussed.

Hughes and Liu introduce the notation that follows, and the associated schematic shown
in Figure 10.2, to describe the current deformed configuration with respect to the reference
configuration:

y=y+Y (10.9a)
y=X+U (10.9b)
Y, =%, +0, (10.9¢)
Y=X+U (10.9d)
Y, =X, +U, (10.9¢)
Y, =X,+U, (10.9f)

In the above relations, and in Figure 10.2, the x quantities refer to the reference configuration,
the y quantities refer to the updated (deformed) configuration and the u quantities are the

displacements. The notation consistently uses a superscript bar (=) to indicate reference surface
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quantities, a superscript caret (*) to indicate unit vector quantities, lower case letters for

translational displacements, and upper case letters indicating fiber displacements. To update to
the deformed configuration, two vector quantities are needed: the reference surface displacement
U and the associated nodal fiber displacement U . The nodal fiber displacements are defined in
the fiber coordinate system, described in the next subsection.

10.2.1 Fiber Coordinate System

For a shell element with four nodes, the known quantities will be the displacements of the
reference surface U obtained from the translational equations of motion and some rotational
quantities at each node obtained from the rotational equations of motion. To complete the

kinematics, we now need a relation between nodal rotations and fiber displacements U .

(parallel construction)

Initial Configuration
Reference Surface

» |

Deformed Configuration N .
Reference Surface

Figure 10.2. Schematic of deformed configuration displacements and position vectors.

At each node a unique local Cartesian coordinate system is constructed that is used as the
reference frame for the rotation increments. The relation presented by Hughes and Liu for the
nodal fiber displacements (rotations) is an incremental relation, i.e., it relates the current
configuration to the last state, not to the initial configuration. Figure 10.3 shows two triads of

unit vectors: (blf b ,bj) comprising the orthonormal fiber basis in the reference configuration

(where the fiber unit vector is now Y= b)) and (b,b,,b,) indicating the incrementally updated

current configuration of the fiber vectors. The reference triad is updated by applying the
incremental rotations, A1 and A@2, obtained from the rotational equations of motion, to the

fiber vectors (blf and b;) as shown in Figure 10.3. The linearized relationship between the

components of AU in the fiber system viz, AU,", AU, , AU/, and the incremental rotations is
given by

10.5



Hughes-Liu Shell LS-DYNA Theory Manual

AUS| 11 0

« A8
AU] t=|0 -1 {A;} (10.10)
AU/ 00 2

Although the above Hughes-Liu relation for updating the fiber vector enables a reduction
in the number of nodal degrees of freedom from six to five, it is not implemented in LS-DYNA
because it is not applicable to beam elements.

| fiber
b3 f 3
b3=Y
f 22
«’A% 2 — ]
/ f N
by by

/

Figure 10.3. Incremental update of fiber vectors using Hughes-Liu incremental rotations.

In LS-DYNA, three rotational increments are used, defined with reference to the global

coordinate axes:
Ale 0 Y, —\?2 AG,

AU, ==Y, 0 Y, |{A6, (10.11)
AU,| | Y, =Y, 0 |(A6

w

Equation (10.11) is adequate for updating the stiffness matrix, but for finite rotations the
error is significant. A more accurate second-order technique is used in LS-DYNA for updating
the unit fiber vectors:

Y™ =R (AQ)Y" (10.12)
where
20. +AS, )A
R; (A0)=0; +£( )+ 45,)AS, (10.13a)
2 D
AS; = g,A6k (10.13b)
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2D :2+%(A¢912 +AG7+A62) (10.130)

Here, &; is the Kronecker delta and e, is the permutation tensor. This rotational update is often

referred to as the Hughes-Winget formula [Hughes and Winget 1980]. An exact rotational
update using Euler angles or Euler parameters could easily be substituted in Equation (10.12),
but it is doubtful that the extra effort would be justified.

10.2.2 Lamina Coordinate System

In addition to the above described fiber coordinate system, a local lamina coordinate
system is needed to enforce the zero normal stress condition, i.e., plane stress. Lamina are layers
through the thickness of the shell that correspond to the locations and associated thicknesses of
the through-the-thickness shell integration points; the analogy is that of lamina in a fibrous
composite material. The orthonormal lamina basis (Figure 10.4), with one direction & normal to

the lamina of the shell, is constructed at every integration point in the shell.

n

Figure 10.4. Schematic of lamina coordinate unit vectors.

The lamina basis is constructed by forming two unit vectors locally tangent to the lamina:

A y|§

6=V (10.14)
[v.|

g =1 (10.15)
[y,

where, as before, y is the position vector in the current configuration. The normal to the lamina
at the integration point is constructed from the vector cross product of these local tangents:

& =6x¢ (10.16)
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To complete this orthonormal lamina basis, the vector
€ =6xe (10.17)

is defined, because &, although tangent to both the lamina and lines of constant &, may not be
normal to & and &. The lamina coordinate system rotates rigidly with the element.

The transformation of vectors from the global to lamina coordinate system can now be
defined in terms of the lamina basis vectors as

Al e, e e ] (A

A A

A=A =g, &, & | (A =[q{A (10.18)

A

Al le. e e ] (A

where €,, €,, &, are the global components of the lamina coordinate unit vectors; A is a vector
in the lamina coordinates, and A is the same vector in the global coordinate system.

10.3 Strainsand Stress Update

10.3.1 Incremental Strain and Spin Tensors
The strain and spin increments are calculated from the incremental displacement gradient

JAU,
G =— (10.19)
aY;
where Au, are the incremental displacements and y, are the deformed coordinates. The
incremental strain and spin tensors are defined as the symmetric and skew-symmetric parts,
respectively, of G; :
1

Ag; :E(Gij +G;) (10.20)
Aw; :%(Gii -G;) (10.21)

The incremental spin tensor Aw,; is used as an approximation to the rotational

contribution of the Jaumann rate of the stress tensor; LS-DYNA implicit uses the more accurate
Hughes-Winget transformation matrix (Equation (10.12)) with the incremental spin tensor for the
rotational update. The Jaumann rate update is approximated as:

n+l n n n
o =0, +0,A0,+0, A0, (10.22)

=ij
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where the superscripts on the stress refer to the updated (n+1) and reference (n) configurations.

The Jaumann rate update of the stress tensor is applied in the global configuration before the
constitutive evaluation is performed. In the Hughes-Liu shell the stresses and history variables
are stored in the global coordinate system.

10.3.2 StressUpdate

To evaluate the constitutive relation, the stresses and strain increments are rotated from
the global to the lamina coordinate system using the transformation defined previously in
Equation (10.18), viz.

|t n+l

O =0xT Ujn (10.23)

=ij

n+

ael” =qael i, (10.24)

ij

where the superscript | indicates components in the lamina (local) coordinate system.
The stress is updated incrementally:

o =g +ac (10.25)
and rotated back to the global system:
0" = Qe G (10.26)
before computing the internal force vector.
10.3.3 Incremental Strain-Displacement Relations
The global stresses are now used to update the internal force vector
" = [T Blodv (10.27)

where ™ are the internal forces at node a, B, is the strain-displacement matrix in the lamina
coordinate system associated with the displacements at node a, and T, is the transformation

matrix relating the global and lamina components of the strain-displacement matrix. Because the
B matrix relates six strain components to twenty-four displacements (six degrees of freedom at
four nodes), it is convenient to partition the B matrix into four groups of six:

B=[B1, B2, B3, B4 (10.28a)

Each B, submatrix is further partitioned into a portion due to strain and spin:

B —| - (10.28b)
a B;U '
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with the following submatrix definitions:

B 0 0 B, 0 0
0 BB 0O 0 B 0
B=|B, B 0 B B, 0 (10.28c)
0 B, B 0 B B
B, 0 B B 0 B,
B, B 0 B B 0
B =l 0 B, -B, 0 B -B (10.28d)
B, 0 B -B 0 B
where
Nai:&Nla fori=12,3
) &yl
i I(N,z)
(N,z,)ya=2%) forj=4,56
7Y 5

Notes on strain-displacement relations:

» The derivatives of the shape functions are taken with respect to the lamina
coordinate system, e.g., y=qy.

» The superscript bar indicates the B’s are evaluated at the center of the lamina
(0,0, ¢). The strain-displacement matrix uses the ‘B-Bar’ (I§)approach

advocated by Hughes [1980]. In the NIKE3D and DYNA3D
implementations, this entails replacing certain rows of the B matrix and the
strain increments with their counterparts evaluated at the center of the
element. In particular, the strain-displacement matrix is modified to produce
constant shear and spin increments throughout the lamina.

e The resulting B -matrix is a 8 x 24 matrix. Although there are six strain and
three rotations increments, the B matrix has been modified to account for the
fact that o,; will be zero in the integration of Equation (10.27).

10.4 Element Mass Matrix

Hughes, Liu, and Levit [Hughes et al., 1981] describe the procedure used to form the
shell element mass matrix in problems involving explicit transient dynamics. Their procedure,
which scales the rotary mass terms, is used for all shell elements in LS-DYNA including those

formulated by Belytschko and his co-workers. This scaling permits large critical time step sizes
without loss of stability.

The consistent mass matrix is defined by
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M :L pN'Ndy,, (10.29)

but cannot be used effectively in explicit calculations where matrix inversions are not feasible.
In LS-DYNA only three and four-node shell elements are used with linear interpolation
functions; consequently, we compute the translational masses from the consistent mass matrix by
row summing, leading to the following mass at element node a:

Mag, = |, P8, dv (10.30)

The rotational masses are computed by scaling the translational mass at the node by the factor «:

M, = Myq, (10.31)
where
o< = maX{oc:L,ocz} (1032)
==(z) +3[z] (10.33)
V

oc, = — 10.34
2= gn ( )

++ —
(z,)= @ (10.35)
[z]=Z-2Z (10.36)

and V and h are the volume and the thickness of the element, respectively.

10.5 Accounting for Thickness Changes

Hughes and Carnoy [1981] describe the procedure used to update the shell thickness due
to large membrane stretching. Their procedure with any necessary modifications is used across
all shell element types in LS-DYNA. One key to updating the thickness is an accurate
calculation of the normal strain component Ag,,. This strain component is easily obtained for
elastic materials but can require an iterative algorithm for nonlinear material behavior. In
LS-DYNA we therefore default to an iterative plasticity update to accurately determine Aeg,;.

Hughes and Carnoy integrate the strain tensor through the thickness of the shell in order
to determine a mean value Ag;:

1
AE; =1 j L AgdS (10.37)

and then project it to determine the straining in the fiber direction:
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g' =Y"AgY (10.38)

Using the interpolation functions through the integration points the strains in the fiber directions
are extrapolated to the nodal points if 2 x 2 selectively reduced integration is employed. The

nodal fiber lengths can now be updated:
h* =h(1+, ) (10.39)

10.6 Fully Integrated Hughes-Liu Shells

It is well known that one-point integration results in zero energy modes that must be
resisted. The four-node under integrated shell with six degrees of freedom per node has nine
zero energy modes, six rigid body modes, and four unconstrained drilling degrees of freedom.
Deformations in the zero energy modes are always troublesome but usually not a serious problem
except in regions where boundary conditions such as point loads are active. In areas where the
zero energy modes are a problem, it is highly desirable to provide the option of using the original
formulation of Hughes-Liu with selectively reduced integration.

The major disadvantages of full integration are two-fold:

» nearly four times as much data must be stored;
» the operation count increases three- to fourfold. The level 3 loop is added as
shown in Figure 10.6.

However, these disadvantages can be more than offset by the increased reliability and accuracy.

n

Figure 10.5. Selectively reduced integration rule results in four inplane points being used.

We have implemented two version of the Hughes-Liu shell with selectively reduced
integration. The first closely follows the intent of the original paper, and therefore no
assumptions are made to reduce costs, which are outlined in operation counts in Table 10.1.
These operation counts can be compared with those in Table 10.2 for the Hughes-Liu shell with
uniformly reduced integration. The second formulation, which reduces the number of operation
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by more than a factor of two, is referred to as the co-rotational Hughes-Liu shell in the LS-
DYNA user’s manual. This shell is considerably cheaper due to the following simplifications:

» Strains rates are not centered. The strain displacement matrix is only

computed at time n+1 and not at time n+12.

» The stresses are stored in the local shell system following the Belytschko-Tsay
shell. The transformations of the stresses between the local and global
coordinate systems are thus avoided.

* The Jaumann rate rotation is not performed, thereby avoiding even more
computations. This does not necessarily preclude the use of the shell in large
deformations.

To study the effects of these simplifying assumptions, we can compare results with those
obtained with the full Hughes-Liu shell. Thus far, we have been able to get comparable results.

— LEVEL L1 - Do over each element group
gather data, midstep geometry calculation

— LEVEL 2 - For each thickness integration point
center of element calculations for selective
reduced integration

— LEVEL 3 - Do over 4 Gauss points
stress update and force
contributions

—LEVEL 2 - Completion

— LEVEL L1 - Completion

Figure 10.6. An inner loop, LEVEL 3, is added for the Hughes-Liu shell with selectively
reduced integration.
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LEVEL L1 - Onceper element

Midstep translation geometry, etc. 204
Midstep calculation of Y 318
LEVEL L2 - For each integration point through thickness (NT points)
Strain increment at (0, 0, {) 316
Hughes-Winget rotation matrix 33
Square root of Hughes-Winget matrix 47
Rotate strain increments into lamina coordinates 66
Calculate rows 3-8 of B matrix 919
LEVEL L3 - For each integration point in lamina
Rotate stress to n+1/2 configuration 75
Incremental displacement gradient matrix 370
Rotate stress to lamina system 75
Rotate strain increments to lamina system 55
Constitutive model model dependent
Rotate stress back to global system 69
Rotate stress to n+1 configuration 75
Calculate rows 1 and 2 of B matrix 358
Stresses in n+1 lamina system 75
Stress divergence 245
TOTAL 522 +NT {1381 +4 * 1397}

Table 10.1. Operation counts for the Hughes-Liu shell with selectively reduced integration.
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LEVEL L1 - Onceper element

Calculate displacement increments 24
Element areas for time step 53
Calculate Y 238
LEVEL L2and L3 - Integration point through thickness (NT points)
Incremental displacement gradient matrix 284
Jaumann rotation for stress 33
Rotate stress into lamina coordinates 75
Rotate stain increments into lamina coordinates 81
Constitutive model model dependent
Rotate stress to n+1 global coordinates 69
Stress divergence 125
LEVEL L1 - Cleanup
Finish stress divergence 60
Hourglass control 356
TOTAL 731 +NT * 667

Table10.2.  Operation counts for the LS-DYNA implementation of the uniformly reduced
Hughes-Liu shell.
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11. TRANSVERSE SHEAR TREATMENT FOR LAYERED SHELL

The shell element formulations that include the transverse shear strain components are
based on the first order shear deformation theory, which yield constant through thickness
transverse shear strains. This violates the condition of zero traction on the top and bottom
surfaces of the shell. Normally, this is corrected by the use of a shear correction factor. The shear
correction factor is 5/6 for isotropic materials; however, this value is incorrect for sandwich and
laminated shells. Not accounting for the correct transverse shear strain and stress could yield a
very stiff behavior in sandwich and laminated shells. This problem is addressed here by the use
of the equilibrium equations without gradient in the y-direction as described by what follows.
Consider the stresses in a layered shell:

() _ ) (oo (i) (o0 _ ) e (i) oo (i) ()
o, =Cy(&+2zy,)+Cy (8y+ ZZy) =C, &, +Cj £+ 2(Cy x, +Cp; Zy)
(i) _ @) e (i) oo (1) (1)
Oy _Clzgx+C228y+Z(ClZZx+CZZZy (11.1)

) =CH (e, + 21,)
Assume that the bending center Z, is known. Then
0 =(2-2)(Cx, +Cllx, )+ Cle(2)+ CPe, (2) (11.2)

The bending moment is given by the following equation:

NL 7 NL 7
M, =2 CY [ Zd2)+x,(>.CY | Z2d2)
i=1 i=1

Za ! LBl

or

1 NC N
M XX = g[ZX chl) (Z|3 - Zis—l) +Zy E_Cl(z) (Z|3 — Zis—l):| (113)

where “ NL” is the number of layers in the material.
Assume ¢,=0 and o, =E ¢, then

&y :ﬁ: (Z_Z);{x
P

and
M. =3 (5% EV(E - 7))
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3M,,
TS E0, (z z')

Therefore, the stress becomes

y_ 3M,EV(z-27)
oy =1 (11.4)

Y EVF-7)

i=1

Now considering the first equilibrium equation, one can write the following:

dor, do,  3QEV(z-zZ
__9% QB 7(272) (11.5)

2 K N ENZ-7)
i=1
2
4 KDEW( -2Z)
) =—— +C, (11.6)

> ES)(f -z

i=1

where Q,, is the shear force and C, is the constant of integration. This constant is obtained from
the transverse shear stress continuity requirement at the interface of each layer.

_ NL )
let (B, =Y ENZ-Z))

i=1

Then

QXZE")( zzj
2 ' i1

C = — +7,
(El),
and
e QEV[Z, A
() =T( 1)+((?E| X |:%_Z_lzx_?+ sz} (11.7)

For the first layer

T =N

> C(F+7)

i=1

3Q,CYY {zz -z

. —zx(z—zo)} (118)

for subsequent layers
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_ 70D _ 3Q.CY {zz ; Z ~Z(z- zo)} 2, <2<z (11.9)
)

Here 7" is the stress in previous layer at the interface with the current layer. The shear stress
can also be expressed as follows:

0) _ 2 _ 2
= T 3Qﬂcll |: fx(l) +%_ZX(Z_ Z—l):| (1110)
Z Cl(ll) (213 - 2?71)
j=1
Where
i 1 & zZ+z, _
= LGN {—’ - Zx} (11.11)
11 )=
and
h=z-z,

To find Q,,, the shear force, assume that the strain energy expressed through average

shear modules, C,, is equal to the strain energy expressed through the derived expressions as
follows:

U=1 % =1j Ye gy (11.12)
2C.h 27 C,
2
1 9h C121 i (ZZ_ZiZ—) =
C56 2_[ C |:x 2 %(( Z|—1)

9h c.® i 2_7 2 3 2
2 Cl‘i)(ﬁ—f_l)} ) -

j=1

1 9h v (CY)h

= zz

Ifi i _as
; BL: COZ - 7 )} m G {1601, +200 (7 +27,,-32) |+
11 Z -7,
=
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zh[20Zh +357°,-107 ,(z +7,)-157 |
. L1 (11.13)
+Z (Z| + Zi—l)(3zi - 74—1) +8Z—1} = C_
66

then
sz = 7xzh = 6667_/xzh
to calculate Z, use 7, for last layer at surface z=0

NL

2C | ESE -2z -3,) |=0

i=1

where
NL
> CPh(z+2z.,)
z, =2 (11.14)
2y CY
i=1
Algorithm:

The following algorithm is used in the implementation of the transverse shear treatment.

1. Calculate Z, according to equation (14)

2. Calculate f! according to equation (11)
NL

3. Calculate %ZCﬂ)(f )

i=1
NL
4. Calculate h(%ZCﬂ’(;3 -Z2))’
i=1

5. Calculate C,, according to equation (13)
6. Calculate Q,=C,7,h
7. Calculate 7,,

M _

1& ()3 3 ()| f@ ZZ_Ziz—l Z
T = gzcn (Zi _Zi—l)szcll fx +T_Zx(z_zi—1) Zi—lszgzi
i=1

Steps 1-5 are performed at the initialization stage. Step 6 is performed in the shell formulation
subroutine, and step 7 is performed in the stress calculation inside the constitutive subroutine.
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12. EIGHT-NODE SOLID SHELL ELEMENT

The isoparametric eight-node brick element discussed in Section 3 forms the basis for this
shell element with enhancements based on the Hughes-Liu and the Belytschko-Lin-Tsay shells.
Like the eight-node brick, the geometry is interpolated from the nodal point coordinates as:

8 .
X (X t) =% (X, (&), t)= D6, (&m.8) X (1) (12.1)
j=1
where the shape function ¢, are defined as
1
9, :§(1+§§j)(1+77771)(1+§§i) (12.2)
where &;,n,,¢; take on their nodal values of (£1, £1, +1) and x) is the nodal coordinate of the

jth node in the ith direction (See Figure 12.1).
As with solid elements, N is the 3 x 24 rectangular interpolation matrix:

¢, 0 0 ¢ O ... O O
0 0 ¢ 0 O ... 0 ¢
o IS the stress vector:
0'=(04.0,,0,,0,,0,,0,) (12.4)

and B is the 6 x 24 strain-displacement matrix:

iOO
X
OiO
2
OO%
& K (12.5)
Jd d
o = =
a N
I 5 2
oz X
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Upper shell surface. The numbering of
A the solid shell determines its orientation.

Node| 8 M &
1 -1 -1 -1
2 L=l =i
3 o =]
4 =1 1 =]
> -1 -1 |
6 1 -1 1
7 I 1
8 =l 1 1

Figure12.1. Eight node solid shell element

Terms in the strain-displacement matrix are readily calculated. Note that

JE K IE NI g IE
Ip _ I ﬁ X N &¢.

K00 K b N 00 o

> (12.6)
an  oXxdn 0"77 oz on
N _ I KX K I o
KKK X X
which can be rewritten as
W | [xyorlas | [as]
A | | KKK || K X
8¢i — 8)( ON'V 82 8¢| =J 8¢| (127)
an | |dnondn | & 2
dp | | K dz| I 9,
I | | dIHKI | dl Loz

Inverting the Jacobian matrix, J, we can solve for the desired terms
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a "
%

B g (12.8)
on

%, %4

L) [

To obtain shell-like behavior from the solid element, it is necessary to use multiple
integration points through the shell thickness along the ¢ axis while employing a plane stress

constitutive subroutine. Consequently, it is necessary to construct a reference surface within the
brick shell. We locate the reference surface midway between the upper and lower surfaces and
construct a local coordinate system exactly as was done for the Belytschko-Lin-Tsay shell
element. Following the procedure outlined in Section 7, Equations (7.1) — (7.3), the local
coordinate system can be constructed as depicted in Figure 12.2. Equation (7.5a) gives the
transformation matrix in terms of the local basis:

A

Al e & & |A ) )
{Al=A=|e, &, e | (A =[ulIAl=[q] 1Al (12.9)

A

Al le. & e, ] |A

As with the Hughes-Liu shell, the next step is to perform the Jaumann rate update:

n+1

o =0y + oA, + 0 A, (10.22)

to account for the material rotation between time steps n and n+1. The Jaumann rate update of

the stress tensor is applied in the global configuration before the constitutive evaluation is
performed. In the solid shell, as in the Hughes-Liu shell, the stresses and history variables are
stored in the global coordinate system. To evaluate the constitutive relation, the stresses and the
strain increments are rotated from the global to the lamina coordinate system using the
transformation defined previously:

|n+1

g = qikQErJlrlan (10.23)

n+2

A‘9in = qikAgI?rT%an (10.24)

where the superscript | indicates components in the lamina (local) coordinate system. The stress
is updated incrementally:

In+1 |n+1

oij =05 +A0-y (10.25)
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A reference surface in constructed
within the solid shell element and
the local reference system is defined.

">

Figure 12.2. Construction of the reference surface in the solid shell element.

Independently from the constitutive evaluation
Ok =0 (12.10)

which ensures that the plane stress condition is satisfied, we update the normal stress which is
used as a penalty to maintain the thickness of the shell:

It n+1 ! I
oY = G penayt | EAgl, (12.11)

where E is the elastic Young’s modulus for the material. The stress tensor of Equation (10.25)
is rotated back to the global system:

n+l | n+l

Oij ~ = UiOun O (10.26)

A penalty stress tensor is then formed by transforming the normal penalty stress tensor (a null
tensor except for the 33 term) back to the global system:
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penalty™*1 penalty m
Gij = qki On qnj (1212)

before computing the internal force vector. The internal force vector can now be computed:
fr=[B" [0"”1 + ey ] dv (12.13)

The brick shell exhibits no discernible locking problems with this approach.
The treatment of the hourglass modes is identical to that described for the solid elements

in Section 3.
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13. EIGHT-NODE SOLID ELEMENT FOR
THICK SHELL SIMULATIONS

13.1 Abstract

An eight-node hexahedral solid element is incorporated into LS-DYNA to simulate thick
shell structure. The element formulations are derived in a co-rotational coordinate system and
the strain operator is calculated with a Taylor series expansion about the center of the element.
Special treatments are made on the dilatational strain component and shear strain components to
eliminate the volumetric and shear locking. The use of consistent tangential stiffness and
geometric stiffness greatly improves the convergence rate in implicit analysis.

13.2 Introduction

Large-scale finite element analyses are extensively used in engineering designs and
process controls. For example, in automobile crashworthiness, hundreds of thousands of
unknowns are involved in the computer simulation models, and in metal forming processing,
tests in the design of new dies or new products are done by numerical computations instead of
costly experiments. The efficiency of the elements is of crucial importance to speed up the
design processes and reduce the computational costs for these problems. Over the past ten years,
considerable progress has been achieved in developing fast and reliable elements.

In the simulation of shell structures, Belytschko-Lin-Tsay [Belytschko, 1984a] and
Hughes-Liu [Hughes, 1981a and 1981b] shell elements are widely used. However, in some cases
thick shell elements are more suitable. For example, in the sheet metal forming with large
curvature, traditional thin shell elements cannot give satisfactory results. Also thin shell
elements cannot give us detailed strain information though the thickness. In LS-DYNA, the
eight-node solid thick shell element is still based on the Hughes-Liu and Belytschko-Lin-Tsay
shells [Hallquist, 1998]. A new eight-node solid element based on Liu, 1985, 1994 and 1998 is
incorporated into LS-DYNA, intended for thick shell simulation. The strain operator of this
element is derived from a Taylor series expansion and special treatments on strain components
are utilized to avoid volumetric and shear locking.

The organization of this paper is as follows. The element formulations are described in the
next section. Several numerical problems are studied in the third section, followed by the
conclusions.

13.3 Element Formulations

13.3.1 Strain Operator
The new element is based on the eight-node hexahedral element proposed and enhanced
by Liu, 1985, 1994, 1998. For an eight-node hexahedral element, the spatial coordinates, x , and

the velocity components, Vv, in the element are approximated in terms of nodal values, x_and
Via» DY

K =3 NEnX, (13.1)
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v =Zsl N.(S. 7.V =123 (13.2)

where the trilinear shape functions are expressed as

NA&U@7=%G+§§NLHAmOﬁ§£7 (13.3)

and the subscripts i and a denote coordinate components ranging from one to three and the
element nodal numbers ranging from one to eight, respectively. The referential coordinates

&, 1, and ¢ of node a are denoted by &, 77, and ¢, respectively.
The strain rate (or rate of deformation), £, is composed of six components,

& :[ Ex Ey €, &y & EZX:' (13.4)

and is related to the nodal velocities by a strain operator, B,

e=B(&n )V, (13.5)
where
vi= [vxl Vi Vi o Vig Vig VZSJ, (13.6)
B, | [B@ 0 0 - B 0 0 ]
B,, o B@® 0 - 0 B,(8) O
5_ E;ZZ _ 0 0 B,1) --- O 0 B.(8) (137)
B,y B,) B(@M 0 - B(8) BB 0
Be| [0 B@® B® - 0 BE BE
|B,] [B(@ 0 B - B@B 0 B |
and B,, B, and B, are gradient vectors,
B, N, (&.7.)
B,| = |N,(&nd)|- (13.8)
B, N.,(&.7.¢)

Unlike standard solid element where the strain operator is computed by differentiating the
shape functions, the strain operator for this new element is expanded in a Taylor series about the
element center up to bilinear terms as follows [Liu, 1994, 1998],
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B(£,7.{)=B(0)+B,; (0), + B,, (0)n+B,; (0){

+2[B,,, (0)é7+B,,, (0)7¢ +B,,, (0)¢Z | .

The first term on the right-hand side of the above Equation (13.9) corresponds to the

constant strain rates evaluated at the central point and the remaining terms are linear and bilinear
strain rate terms.

(13.9)

Let
X=X =X % X X X% % % %], (13.10)
%=y =V Yo Vs Ve Y5 Yo Vs Vel (13.11)
%=2=(2122121727%7%], (13.12)
f=[-111-1411-1], (13.13)
n'=[-1-1114-4111], (13.14)
{=[-1-1-1-11111], (13.15)

the Jacobian matrix at the center of the element can be evaluated as

&x &y &'z
JO)=[3; ]=% nx n'y n'z|; (13.16)
f'x Jly {'z
the determinant of the Jacobian matrix is denoted by j, and the inverse matrix of J(0) is denoted

by D
D = [ D |=37(0) (13.17)

The gradient vectors and their derivatives with respect to the natural coordinates at the
center of the element are given as follows,

b,= N,,(0) = % [D,,¢ + D, + D< ], (13.18)
b,= N, (0) = % [D,.& + Dyn + DL ], (13.19)
b,= N,,(0) = % [Dy& + D,,17 + D<) (13.20)
by =N, (O)=%[D127/1 +Dy2,] (13.21)
b,: =N, (0)=%[D227/1+ DA (13.22)
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b, =N, (O)=%[D32;/l +Dy7, ], (13.23)
b,,=N,,, (0)=%[ D%+ D] (13.24)
b,,=N,,, (0)=%[ D,.74 + Dy ] (13.25)
b,,=N,,, (0)=%[D31;/l +Dy7] (13.26)

b =N, (O)=%[D117/2 +Dy,7] (13.27)

b, =N, (O)=%[D2172+D2273] , (13.28)

by, =N, (0):%[D3172+D3273] , (13.29)

by =Nos, (0)%[013;/4 —Ex)b —( x)b,, ], (13.30)
b,z =Ny, (O)=%[D2374 — (P, X) b, .= (r; x,)by , |, (13.31)
by =Nz, (0)=%[D3374 —(ps )b = (5 %) by, | (13.32)
b, =N, (0)=%[D117/4 (@ x,)b,, ~ (i x)b, ], (13.33)
By e =Nuyye (0)=1[D2174 —(@,%)b,, (P, x)by, |, (13.34)
by, =N, (0)_8[ s — (A5 X)) by, —(p5 X)) b, | (13.35)
by e =N, (0) %[ e — (1 X by = (@ X by |, (13.36)
b, ;- =N, (0) %[ Ve (1 X) by = (@ )by . |, (13.37)
by e =N, (0)= ; [ Doy, —(rix) by . — (@5 X)b; . |, (13.38)

where

p,=D,h +D,h,, (13.39)
q,=D,h,+D,h,, (13.40)
rr=D,h,+D;h,, (13.41)

Y.=h,—(h, ) by, (13.42)

and
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hi=[1 -11 -11-11 -1], (13.43)
hi=[1 -1 -11 -111 -1], (13.44)
hi=[11 -1 -1 -1 -111], (13.45)
hi=[-11-111-11 -1], (13.46)

In the above equations h, is the &7 -hourglass vector, h, the 7¢ -hourglass vector, h,

the ¢&-hourglass vector and h,the &nd -hourglass vector.  They are the zero energy-
deformation modes associated with the one-point-quadrature element which result in a non-
constant strain field in the element [Flanagan, 1981, Belytschko, 1984 and Liu, 1984]. The y, in

equations (13.21)—(13.38) are the stabilization vectors. They are orthogonal to the linear
displacement field and provide a consistent stabilization for the element.

The strain operators, B(&,7,¢), can be decomposed into two parts, the dilatational part,

B (&,n,¢8), and the deviatoric part, B®(&,1,¢), both of which can be expanded about the
element center as in Equation (13.9)

B (¢,1.0) =B (0)+B¥ (0)¢+BY (0)7+B% (0)¢

E ’ . (13.47)
+2[B' (0)¢n+BS, (0)nd +BE: (0)55]

B*™(&77,{) = B* (0)+BY¥ (0 £+B5 (0)7+BF (0)¢
o dev o dev Odev (1348)
+2[ B (0)&n+B5 (0 +BE (0)¢¢ |,

To avoid volumetric locking, the dilatational part of the strain operators is evaluated only
at one quadrature point, the center of the element, i.e., they are constant terms

B"(£,n,¢) =B" (0) . (13.49)

To remove shear locking, the deviatoric strain submatrices can be written in an
orthogonal co-rotational coordinate system rotating with the element as

B (§.7.0) = B (0)+B: (0)5+B, (0)7+B; (0) ¢

. (13.50)
+2[ B, (0)&n+B5, (0) 78 +Bi (00 4¢ ],
B (&m.) = By (0+By (0 £+By, (0 n+By, (00¢
. (13.51)
+2[ By, (0)§n+BW,7; (O)n;+BM 0)¢£],
BE'(&.7.) = BE (0)+B%. (0)£+BS, (0)n+BE; (0)¢
(13.52)

+2[ B, (00én+B5, (0)n¢ +BEL (0],
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By (6.1.¢) =By (0)+B; (0)¢, (13.53)
Bl (6.m.{) =By (0)+By; (0)¢, (13.54)
B (6.1.0) = By (0)+B, (0)77. (13.55)

Here, only one linear term is left for shear strain components such that the modes causing
shear locking are removed. The normal strain components keep all non-constant terms given in
equation (13.48).

Summation of equation (13.49) and equations (13.50)—(13.55) yields the following strain
submatrices which can eliminate the shear and volumetric locking:

B (£:1.{) = B, (0)+B: (0)S+Big, (0)n+B;, (0)

] ) (13.56)
+2| Bxx%,, (0)En+B5, (0)n¢ +Bi, (0)¢E]
B,,(&:m.) = B,, (0)+BY. (0)+ B, (0)7+B%, (004
(13.57)
+2| By, (0)577+BW,7; (0)77§+BW;§ 0],
B..(£.1.0) =B, (0)+B%. (0 £+B%, (0)n+B%; (0
e (13.58)
+2[ BE, (0 &n+BY, (0)ns +BEy, (00 &£ ],
B, (£.m{) =B, (0)+B%, (0)¢, (13.59)
B,.(6:m.() =B, (0)+B%. (0)¢, (13.60)
B.(£.1.4) =B, (0)+B¥, (0)7. (13.61)

It is noted that the elements developed above cannot pass the patch test if the elements are
skewed. To remedy this drawback, the gradient vectors defined in (13.18)—(13.20) are replaced
by the uniform gradient matrices, proposed by Flanagan [1981],

E)l 1 B.(&7n.{)
= o] B:Em0) v, (13.62)
E)3 ) 83(5177,;)

where V, is the element volume and the stabilization vectors are redefined as

y :ha_(hta Xi)Bi' (13.63)
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Figure 13.1. Definition of co-rotational coordinate system

The element using the strain submatrices (13.56)-(13.61) and uniform gradient matrices
(13.62) with four-point quadrature scheme is called HEXDS element.

13.3.2 Co-rotational Coordinate System

In elements for shell/plate structure simulations, the elimination of the shear locking
depends on the proper treatment of the shear strain. It is necessary to attach a local coordinate
system to the element so that the strain tensor in this local system is relevant for the treatment.
The co-rotational coordinate system determined here is one of the most convenient ways to
define such a local system.

A co-rotational coordinate system is defined as a Cartesian coordinate system which
rotates with the element. Let {x,,V,,z} denote the current nodal spatial coordinates in the

global system. For each quadrature point with natural coordinates(&,7,{), we can have two
tangent directions on the mid-surface ({'=0) within the element (see Fig. 13.1)

_ox_[ox oy oz

%=3¢| 3¢ 2 3 éJz[l\la,‘fxa NagYa NasZe | (13.64)

g _9x_[ox dy dz
* 9n |on on Iny

}:[meﬁ NaoYa Noyza |0 (13.65)

The unit vector €, of the co-rotational coordinate system is defined as the bisector of the
angle intersected by these two tangent vectors g, and g, ; the unit vector €, is perpendicular to
the mid-surface and the other unit vector is determined by €, and &,, i.e.,

A 9. , 9
8 =| 242
' (|91| |92|J/[

g .0

19 [9.]

J , (13.66)
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e, _9:1%9, , (13.67)
19, %9,
8,=8,x8,, (13.68)

which lead to the transformation matrix

=

(13.69)

Py
Il

™ @D D
N

13.3.3 Stressand Strain Measures

Since the co-rotational coordinate system rotates with the configuration, the stress defined
in this co-rotational system does not change with the rotation or translation of the material body
and is thus objective. Therefore, we use the Cauchy stress in the co-rotational coordinate system,
called the co-rotational Cauchy stress, as our stress measure.

The rate of deformation (or velocity strain tensor), also defined in the co-rotational
coordinate system, is used as the measure of the strain rate,

. o dlef o def !
g'_d_ilav J{a" ” (13.70)

2| dX dX

where ¥* is the deformation part of the velocity in the co-rotational system X. If the initial
strain £(X,0) is given, the strain tensor can be expressed as,

F(X,1)=&(X,0)+ j;a(x,r) dr. (13.72)

The strain increment is then given by the mid-point integration of the velocity strain
tensor,

X, axn%

N

t
~ ~ def ~ def
Aé:j:”“ddri% QADT [aA“ J , (13.72)

where AU is the deformation part of the displacement increment in the co-rotational system
X, referred to the mid-point configuration.

2

13.3.4 Co-rotational Stressand Strain Updates
For stress and strain updates, we assume that all variables at the previous time step t, are

known. Since the stress and strain measures defined in the earlier section are objective in the co-
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rotational system, we only need to calculate the strain increment from the displacement field
within the time increment |[t,,t,.,]. The stress is then updated by using the radial return

algorithm.
All the kinematical quantities must be computed from the last time step configuration,

Q_, at t=t, and the current configuration, Q ., at t=t , since these are the only available data.
Denoting the spatial coordinates of these two configurations as x,and x,,, in the fixed global

Cartesian coordinate system Ox, as shown in Figure 13.2, the coordinates in the corresponding
co-rotational Cartesian coordinate systems, Ox, and OX,.,, can be obtained by the following

transformation rules:

n+l n+1

X, =R, X, , (13.73)
Xy =R, X (13.74)
where R, and R ,, are the orthogonal transformation matrices which rotate the global

coordinate system to the corresponding co-rotational coordinate systems, respectively.
Since the strain increment is referred to the configuration at t=t_ ., by assuming the

velocities within the time increment [ t,, t,., | are constant, we have

Xn+%:%<xn+xn+1) J (1375)

and the transformation to the co-rotational system associated with this mid-point configuration,
Q_ ., isgiven by

(13.76)

1 1-
n+s3 n+5
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Figure 13.2. Configurations at times t,t ., andt

n+1?

Similar to polar decomposition, an incremental deformation can be separated into the
summation of a pure deformation and a pure rotation [Belytschko, 1973]. Letting Au indicate

the displacement increment within the time increment [tn,t J we write

Au=Au® +AU™ (13.77)

where Au®™ and Au™ are, respectively, the deformation part and the pure rotation part of the
displacement increment in the global coordinate system. The deformation part also includes the
translation displacements which cause no strains.

In order to obtain the deformation part of the displacement increment referred to the
configuration at t= t.y, We need to find the rigid rotation from Q_ to Q ., provided that the

’
n+l?

mid-point configuration, ©__,, is held still. Defining two virtual configurations, €, and Q

by rotating the element bodies 2, and Q

n+1

into the co-rotational system OX_ . (Fig. 13.3) and

’
n+1

’
n+l

denoting and X, as the coordinates of Q; and €., in the co-rotational system OX__,, we

have
(13.78)

We can see that from Q_ to Q/ and from Q' , to Q
rotations and the rotation displacements are given by

the body experiences two rigid

n+l?

t t s t s
Au,® :x;—xn:Rn% x;—xn:Rn% X=X, (13.79)
rot _ r t o t s
AuZ _Xn+1_xn+1_xn+l_Rn+% X1 =Xnp1— Rn+% X - (1380)
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Thus the total rotation displacement increment can be expressed as

rot _ rot rot _ t % "%
Au™ =Au; +Au, _xnﬂ—xn—RM%(Xm—Xn)

o (13.81)
:Au—RfH%(xM— X,) .

X

Figure 13.3. Separation of the displacement increment

Then the deformation part of the displacement increment referred to the configuration

Q s

1
n+2

Au* =Au-AU™=R! , (X, - X,). (13.82)

Therefore, the deformation displacement increment in the co-rotational coordinate system
OX, ., is obtained as

AU =R, Au* =%, -X, . (13.83)

1
n+3 n

Once the strain increment is obtained by equation (13.72), the stress increment, also
referred to the mid-point Configuration, can be calculated with the radial return algorithm. The
total strain and stress can then be updated as

=& +AE (13.84)
=6, +AG . (13.85)

Note that the resultant stress and strain tensors are both referred to the current
configuration and defined in the current co-rotational coordinate system. By using the tensor
transformation rule we can have the strain and stress components in the global coordinate system.
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13.3.5 Tangent StiffnessMatrix and Nodal Force Vectors
From the Hu-Washizu variational principle, at both vth and (v+1)th iteration, we have

[, c&i6yav =6, (13.86)

[... 086y av =ars (13.87)

where o7, is the virtual work done by the external forces. Note that both equations are written
in the co-rotational coordinate system defined in the vth iterative configuration given by x|

n+l-

The variables in this section are within the time step [tn,tm;} and superscripts indicate the

number of iterations.
Assuming that all external forces are deformation-independent, linearization of Equation
(13.87) gives [Liu, 1992]

[, 80" CiuAG, v + [ 80" T AG, AV = 62y, - 6723, (13.88)
where the Green-Naghdi rate of Cauchy stress tensor is used, i.e.,
ﬁij =0,5) . (13.89)

The first term on the left hand side of (13.88) denotes the material response since it is due
to pure deformation or stretching; the second term is an initial stress part resulting from finite
deformation effect.

Taking account of the residual of the previous iteration, Equation (13.87) can be
approximated as

[, 80" (C+Tiw ) A, dv =67y - [ 68/ 6 AV (13.90)

If the strain and stress vectors are defined as
£' =[£X g, €, 26, 2¢, 2¢, 20,, 20,20, ] : (13.91)
o' :[GX o, 0,0, 0, GZX:' : (13.92)
We can rewrite equation (13.90) as

j@ 08" (Cy+Ty' ) 08, dv =57~ jQ SE' 6V dV, (13.93)

ext
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where CA:”V is the consistent tangent modulus tensor corresponding to pure deformation (see

Section 3.2.3) but expanded to a 9 by 9 matrix; 'I:ijv is the geometric stiffness matrix which is
given as follows [Liu 1992]:

o, 0 0 & 0 Te 94 0o -Z
2 2 2 2
5, 0 & % % O 0
2 2 2 2
oo 0o & % o - %
2 2 2 2
0,to0, Oy o  0,-0, O O5
4 4 4 4 4 4
T 0,t0; Oy 9% %70 % | (13.94)
4 4 4 4 4
symm. 0,+0, oy o, 0,-0,
4 4 4 4
o,to, O, K
4 4 4
o,t0, O,
4 4
0,+0,
L 4
By interpolation
Au=NAd, Jdu=Ndd; (13.95)
Ae=BAd, Jde=Bdd, (13.96)

where N and B are, respectively, the shape functions and strain operators defined in Section 2.
This leads to a set of equations

KYAd=f""t=fut—fv (13.97)

where the tangent stiffness matrix, K", and the internal nodal force vector, fiﬁt , are

k= B (C'+T)Bav, (13.98)

fr=[.B &"av. (13.99)
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The tangent stiffness and nodal force are transformed into the global coordinate system
tensorially as

K'=R"K'R", (13.100)
M =R"{" (13.101)
where R" is the transformation matrix of the co-rotational system defined by x: ,. Finally, we
get a set of linear algebraic equations
KYAd"™ =r"* . (13.102)

13.4 Numerical Examples

To investigate the performance of the element introduced in this paper, a variety of
problems including linear elastic and nonlinear elastic-plastic/large deformation problems are
studied. Since the element is developed to avoid locking, the applicability to problems of thin
structures is studied by solving the standard test problems including pinched cylinder and
Scordelis-Lo roof, which are proposed by MacNeal, 1985 and Belytschko, 1984b. Also a sheet
metal forming problem is solved to test and demonstrate the effectiveness and efficiency of this
element.

13.4.1 Timoshenko Cantilever Beam

The first problem is a linear, elastic cantilever beam with a load at its end as shown in
Fig. 13.4, where M and P at the left end of the cantilever are reactions at the support. The
analytical solution from Timoshenko, 1970 is

_Py _
u, (X, y)=6ﬁ[(6L—3x)x+(2+v)(y2—%Dz)] : (13.103)
P _ 9 l — 2 2
u, (X, y):ﬁ{?,vy (L-x) +Z(4+5V)D X+(3L—X) X } (13.104)
where
I :i D*,
12
E_ E, Ve v, for planestress;
| EIA-vY), ~via-v), for planestrain.

The displacements at the support end, x=0, -+ D<y<iD are nonzero except at the top,

bottom and midline (as shown in Fig. 13.5). Reaction forces are applied at the support based on
the stresses corresponding to the displacement field at x=0, which are
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1o :—ﬂ(L—x), o, =0, o P(lDz—yzj. (13.105)

O w YAV

The distribution of the applied load to the nodes at x= L is also obtained from the
closed-form stress fields.

.

P2

7 Y N AN
L Pt. A
(a) Regular mesh

R
% I' T T
D | | | P/2
2 I I I X
7 PF T P~
1 Pt. A

(b) Skewed mesh

Figure 13.5. Top half of anti-symmetric beam mesh

The parameters for the cantilever beam are: L =1.0,D=0.02,P=20,E=1_x 10"; and two
values of Poisson’s ratio: (1) v= 0.25, (2)v = 0.4999.

Since the problem is anti-symmetric, only the top half of the beam is modeled. Plane
strain conditions are assumed in the z-direction and only one layer of elements is used in this
direction. Both regular mesh and skewed mesh are tested for this problem.
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Normalized vertical displacements at point A for each case are given in Table 13.1.
Tables 13.1a and 13.1b show the normalized displacement at point A for the regular mesh.
There is no shear or volumetric locking for this element. For the skewed mesh, with the skewed
angle increased, we need more elements to get more accurate solution (Table 13.1c).

(@) v= 0.25, regular mesh
Analytical solution w, = 9.3777x107

Mesh

4x1x1

8x1x1

8x2x1

HEXDS

1.132

1.142

1.029

(b) v = 0.4999, regular mesh
Analytical solution w, = 7.5044x107

Mesh | 4x1x1| 8x1x1 | 8x2x1
HEXDS 1.182 1.197 1.039
(c)v= 0.25, skewed mesh

6 1° 5° 10°
4x1x1 1.078 0.580 0.317
8x1x1 1.136 0.996 0.737
16x1x1 | 1.142 1.090 0.955

Table 13.1. Normalized displacement at point A of cantilever beam.

13.4.2 Pinched Cylinder

Figure 13.6 shows a pinched cylinder subjected to a pair of concentrated loads. Two
cases are studied in this example. In the first case, both ends of the cylinder are assumed to be
free. In the second case, both ends of the cylinder are covered with rigid diaphragms so that only
the displacement in the axial direction is allowed at the ends. The parameters for the first case

(without diaphragms) are
E=1.05x 10°,v= 0.3125,L= 10.35,R= 1.0, t = 0.094,P= 100.0;
while for the second case (with diaphragms), the parameters are set to be
E = 3x10°,v=0.3,L=600.0, R=300.0,t= 3.0, P= 10.
Due to symmetry only one octant of the cylinder is modeled. The computed
displacements at the loading point are compared to the analytic solutions in Table 13.2. HEXDS
element works well in both cases, indicating that this element can avoid not only shear locking

but also membrane locking; this is not unexpected since membrane locking occurs primarily in
curved elements [Stolarski, 1983].
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13.4.3 Scordelis-L o Roof
Scordelis-Lo roof subjected to its own weight is shown in Figure 13.7. Both ends of the
roof are assumed to be covered with rigid diaphragms. The parameters are selected to be:

E=4.32x10°, v=0.0, L=50.0, R=25.0, t=0.25, #=40°, and the gravity is 360.0 per volume.

(a) First case without diaphragms
Analytical solution w,, =0.1137

Mesh | 10 x10x2 | 16x16x4 | 20x20x 4
HEXDS 1.106 1.054 1.067

(b) Second case with diaphragms
Analytical solution w,_ =1.8248x10°

Mesh | 10 x10x2 | 16x16x4 | 20x20x 4
HEXDS 0.801 0.945 0.978

Table 13.2. Normalized displacement at loading point of pinched cylinder

free or with diaphragm

Figure 13.6. Pinched cylinder and the element model
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Figure 13.7. Scordelis-Lo roof under self-weight

Due to symmetry only one quarter of the roof is modeled. The computed displacement at
the midpoint of the edge is compared to the analytic solution in Table 13.3. In this example the
HEXDS element can get good result with 100 x 2 elements.

Analytical solution w,_, = 0.3024

Mesh | 8x8x1 16x16x1 | 32x32x1 | 10x10x2
HEXDS 1.157 1.137 1.132 1.045

Table 13.3. Normalized displacement at mid-edge of Scordelis-Lo roof

13.4.4 Circular Sheet Stretched with a Tight Die

A circular sheet is stretched under a hemisphere punch and a tight die with a small corner
radius (Fig. 13.8). The material is elastoplastic with nonlinear hardening rule. The elastic
material constants are: E=206GPa and v=0.3. In the plastic range, the uniaxial stress-strain

curve is given by
o=Keg",

where K = 509.8 MPa, n= 0.21, o is Cauchy stress and ¢ is natural strain (logarithmic strain).
The initial yield stress is obtained to be o, = 103.405 Mpa and the tangent modulus at the

initial yield point is E, =0.4326x10° MPa.
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hemisphere
punch

|
(\ tight die
' r=2mm
|
R =56mm |

w t=2mm

R ,=54mm

Figure 13.8. Circular sheet stretched with a tight die

Because of the small corner radius of the die, the same difficulties as in the problem of
sheet stretch under the rigid cylinders lead the shell elements to failure in this problem. Three-
dimensional solid elements are needed and fine meshes should be put in the areas near the center
and the edge of the sheet.

One quarter of the sheet is modeled with 1400 x 2 HEXDS elements due to the double
symmetries. The mesh is shown in Fig. 13.9. Two layers of elements are used in the thickness.
Around the center and near the circular edge of the sheet, fine mesh is used. The nodes on the
edge are fixed in x- and y-directions and the bottom nodes on the edge are prescribed in three
directions. No friction is considered in this simulation. For comparison, the axisymmetric four-
node element with reduced integration (CAX4R) is also used and the mesh for this element is the
same as shown in the top of Figure 13.9.

The results presented here are after the punch has traveled down 50 mm. The profile of
the circular sheet is shown in Figure 13.10 where we can see that the sheet under the punch
experiences most of the stretching and the thickness of the sheet above the die changes a lot. The
deformation between the punch and the die is small. However, the sheet thickness obtained by
the CAX4R element is less than that by the HEXDS element and there is slight difference above
the die. These observations can be verified by the strain distributions in the sheet along the radial
direction (Figure 13.12). The direction of the radial strain is the tangent of the mid-surface of the
element in the rz plane and the thickness strain is in the direction perpendicular to the mid-
surface of the element. The unit vector of the circumferential strain is defined as the cross-
product of the directional cosine vectors of the radial strain and the thickness strain. We can see
that the CAX4R element yields larger strain components in the area under the punch than the
HEXDS element. The main difference of the strain distributions in the region above the die is
that the CAX4R element gives zero circumferential strain in this area but the HEXDS element
yields non-zero strain. The value of the reaction force shown in the Figure 13.11 is only one
quarter of the total punch reaction force since only one quarter of the sheet is modeled. From this
figure we can see that the sheet begins softening after the punch travels down about 45 mm,
indicating that the sheet may have necking though this cannot be seen clearly from Figure 13.10.
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Figure 13.9. Mesh for circular sheet stretching
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Figure 13.10. Deformed shape of a circular sheet with punch travel 50 mm
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Figure 13.11. Reaction force vs. punch travel for the circular sheet
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(c) Thickness strain distribution
Figure 13.12. Strain distributions in circular sheet with punch travel 50 mm

13.5 Conclusions

A new eight-node hexahedral element is implemented for the large deformation elastic-
plastic analysis. Formulated in the co-rotational coordinate system, this element is shown to be
effective and efficient and can achieve fast convergence in solving a wide variety of nonlinear
problems.

By using a co-rotational system which rotates with the element, the locking phenomena
can be suppressed by omitting certain terms in the generalized strain operators. In addition, the
integration of the constitutive equation in the co-rotational system takes the same simple form as
small deformation theory since the stress and strain tensors defined in this co-rotational system
are objective.

Radial return algorithm is used to integrate the rate-independent elastoplastic constitutive
equation. The tangent stiffness matrix consistently derived from this integration scheme is
crucial to preserve the second order convergence rate of the Newton’s iteration method for the
nonlinear static analyses.

Test problems studied in this paper demonstrate that the element is suitable to continuum
and structural numerical simulations. In metal sheet forming analysis, this element has
advantages over shell elements for certain problems where through the thickness deformation
and strains are significant.
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14. TRUSSELEMENT

One of the simplest elements is the pin-jointed truss element shown in Figure 14.1. This
element has three degrees of freedom at each node and carries an axial force. The displacements
and velocities measured in the local system are interpolated along the axis according to

u=u, +—(u, —u) (14.1)

U= + % (0, —uy) (14.2)
where at x=0, u=u,and atx=L,u=u,. Incremental strains are found from

Ae = (uz—lul)m (14.3)

and are computed in LS-DYNA using
z(u;” 2 _ u{”%)

n+}/
Ag 2= Ln + Ln+1

A" (14.4)

The normal force N is then incrementally updated using a tangent modulus E' according to
N™' = N" AE' + Ag ™"? (14.5)

Two constitutive models are implemented for the truss element: elastic and elastic-plastic
with kinematic hardening.
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Figure 14.1. Truss element.
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15. MEMBRANE ELEMENT

The Belytschko-Lin-Tsay shell element {Belytschko and Tsay [1981], Belytschko et al.,
[1984a]} is the basis for this very efficient membrane element. In this section we briefly outline
the theory employed which, like the shell on which it is based, uses a combined co-rotational and
velocity-strain formulation. The efficiency of the element is obtained from the mathematical
simplifications that result from these two kinematical assumptions. The co-rotational portion of
the formulation avoids the complexities of nonlinear mechanics by embedding a coordinate
system in the element. The choice of velocity strain or rate of deformation in the formulation
facilitates the constitutive evaluation, since the conjugate stress is the more familiar Cauchy
stress.

In membrane elements the rotational degrees of freedom at the nodal points may be
constrained, so that only the translational degrees-of-freedom contribute to the straining of the
membrane. A triangular membrane element may be obtained by collapsing adjacent nodes of the
quadrilateral.

15.1 Co-rotational Coordinates

The mid-surface of the quadrilateral membrane element is defined by the location of the
element’s four corner nodes. An embedded element coordinate system (Figure 7.1) that deforms
with the element is defined in terms of these nodal coordinates. The co-rotational coordinate
system follows the development in Section 7, Equations (7.1)—(7.3).

15.2 Velocity-Strain Displacement Relations
The co-rotational components of the velocity strain (rate of deformation) are given by:

6, =120, 70 7.7)
bo2( 9% IX

The above velocity-strain relations are evaluated only at the center of the shell. Standard
bilinear nodal interpolation is used to define the mid-surface velocity, angular velocity, and the
element’s coordinates (isoparametric representation). These interpolation relations are given by

V' = Ny, (7.92)

X" = N (S, (7.9c)

where the subscript | is summed over all the element’s nodes and the nodal velocities are
obtained by differentiating the nodal coordinates with respect to time, i.e., v, = X, . The bilinear

shape functions are defined in Equations (7.10).
The velocity strains at the center of the element, i.e., at £ = 0, and 7 = 0, are obtained as

in Section 7 giving:

d, =B,D, (7.11a)
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d, = By dy, (7.11b)
2d,, = By U, +By ¥y, (7.11c)
where
IN,
= 7.12a
B =3 (7.12a)
JdN
B, == y' (7.12b)

15.3 Stress Resultantsand Nodal Forces

After suitable constitutive evaluations using the above velocity strains, the resulting
stresses are multiplied by the thickness of the membrane, h, to obtain local resultant forces.
Therefore,

. i (15.1)
05’} = hO'aﬁ

where the superscript R indicates a resultant force and the Greek subscripts emphasize the limited
range of the indices for plane stress plasticity.
The above element centered force resultants are related to the local nodal forces by

fo= fRyB, fR (7.14a)
x| I xx 21 "xy

f, = A(le fR+B, fg) (7.14b)

where A is the area of the element.
The above local nodal forces are then transformed to the global coordinate system using
the transformation relations given in Equation (7.5a).

15.4 Membrane Hourglass Control
Hourglass deformations need to be resisted for the membrane element. The hourglass
control for this element is discussed in Section 7.4.
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16. DISCRETE ELEMENTSAND MASSES

The discrete elements and masses in LS-DYNA provide a capability for modeling simple
spring-mass systems as well as the response of more complicated mechanisms. Occasionally, the
response of complicated mechanisms or materials needs to be included in LS-DYNA models,
e.g., energy absorbers used in passenger vehicle bumpers. These mechanisms are often
experimentally characterized in terms of force-displacement curves. LS-DYNA provides a
selection of discrete elements that can be used individually or in combination to model complex
force-displacement relations.

The discrete elements are assumed to be massless. However, to solve the equations of
motion at unconstrained discrete element nodes or nodes joining multiple discrete elements,
nodal masses must be specified at these nodes. LS-DYNA provides a direct method for
specifying these nodal masses in the model input.

All of the discrete elements are two-node elements, i.e., three-dimensional springs or
trusses. A discrete element may be attached to any of the other LS-DYNA continuum, structural,
or rigid body element. The force update for the discrete elements may be written as

fi = fl 4 Af (16.1)

where the superscript i + 1 indicates the time increment and the superposed caret (*) indicates
the force in the local element coordinates, i.e., along the axis of the element. In the default case,
i.e., no orientation vector is used; the global components of the discrete element force are
obtained by using the element’s direction cosines:

F, : Al n,
Fy =T Alyp=fin,r=1fn (16.2)
F, Al, n,
where
Alx X=X
Al=<Al b =Y, =V (16.3)
Al, 5L-4
| is the length
| = JAIZ+ 12 + Al (16.4)

and (x,Y.,z) are the global coordinates of the nodes of the spring element. The forces in
Equation (16.2) are added to the first node and subtracted from the second node.
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For a node tied to ground we use the same approach but for the (x,, Y,, z,) coordinates in
Equation (16.2) the initial coordinates of node 1, i.e., (X,, ¥,, %, ) are used instead; therefore,

I:x 1’; Xo =% Ny
Fy = 1Yo~ Y= finy (16.5)
Fz -4 n,

The increment in the element force is determined from the user specified force-
displacement relation. Currently, nine types of force-displacement/velocity relationships may be
specified:

linear elastic;

linear viscous;

nonlinear elastic;

nonlinear viscous;

elasto-plastic with isotropic hardening;
general nonlinear,;

linear viscoelastic.

inelastic tension and compression only.
muscle model.

CoNoakrwNE

The force-displacement relations for these models are discussed in the following later.

16.1 Orientation Vectors
An orientation vector,

m=1{m, (16.6)

can be defined to control the direction the spring acts. If orientation vectors are used, it is
strongly recommended that the nodes of the discrete element be coincident and remain
approximately so throughout the calculation. If the spring or damper is of finite length, rotational
constraints will appear in the model that can substantially affect the results. If finite length
springs are needed with directional vectors, then the discrete beam elements, the type 6 beam,
should be used with the coordinate system flagged for the finite length case.

We will first consider the portion of the displacement that lies in the direction of the
vector. The displacement of the spring is updated based on the change of length given by

Al=1-1, (16.7)

where 1, is the initial length in the direction of the vector and | is the current length given for a
node to node spring by
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l=m (% -x)+m (Y, -y1)+ M (2 -2) (16.8)
and for a node to ground spring by

l=m (% -%)+m (Y -Y,)+m(z-2) (16.9)

The latter case is not intuitively obvious and can affect the sign of the force in unexpected ways
if the user is not familiar with the relevant equations. The nodal forces are then given by

m,

A

I:X
Fyt=fim, (16.10)
F, m,

The orientation vector can be either permanently fixed in space as defined in the input or acting
in a direction determined by two moving nodes which must not be coincident but may be
independent of the nodes of the spring. In the latter case, we recompute the direction every cycle
according to:

m, X =X

1
M= Yz = Vi (16.11)
m, z -2

In Equation (16.9) the superscript, n, refers to the orientation nodes.
For the case where we consider motion in the plane perpendicular to the orientation
vector we consider only the displacements in the plane, Al®, given by,
AP = Al —m(m- Al ) (16.12)
We update the displacement of the spring based on the change of length in the plane given by

AIP =[PP (16.13)

where 1 is the initial length in the direction of the vector and | is the current length given for a
node to node spring by

1P =mP (%, —x )+ mP(y, — y;)+mf(z, - z) (16.14)
and for a node to ground spring by

1P =mP(x)— %)+ mP(yo — vi)+mb(z - z) (16.15)
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where

my AlR

1
my Aly (16.16)
my AlP

- 2 2 2
\/AI)E’ +AI) + ALY
After computing the displacements, the nodal forces are then given by

F, mP
Fyr="fim (16.17)
F, my

16.2 Dynamic Magnification “ Strain Rate” Effects

To account for “strain rate” effects, we have a simple method of scaling the forces based
on the relative velocities that applies to all springs. The forces computed from the spring
elements are assumed to be the static values and are scaled by an amplification factor to obtain
the dynamic value:

\%
denam'c = (1' +Kq \T] Fetatic (16.18)
0
where
k, = isauserdefined input value
V = absolute relative velocity
V, = dynamic test velocity

For example, if it is known that a component shows a dynamic crush force at 15m/s equal to 2.5
times the static crush force, use k; =1.5 and V,=15.

16.3 Deflection Limitsin Tension and Compression

The deflection limit in compression and tension is restricted in its application to no more
than one spring per node subject to this limit, and to deformable bodies only. For example in the
former case, if three spring are in series either the center spring or the two end springs may be
subject to a limit but not all three. When the limiting deflection is reached momentum
conservation calculations are performed and a common acceleration is computed:

Acommon = (16.19)
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An error termination will occur if a rigid body node is used in a spring definition where
compression is limited.

16.4 Linear Elastic or Linear Viscous
These discrete elements have the simplest force-displacement relations. The linear elastic
discrete element has a force-displacement relation of the form

f = KAl (16.20)

where K is the element’s stiffness and Al is the change in length of the element. The linear
viscous element has a similar force-velocity (rate of displacement) relation:

Al

f=Cc=
At

(16.21)

where C is a viscous damping parameter and At is the time step increment.

16.5 Nonlinear Elastic or Nonlinear Viscous

These discrete elements use piecewise force-displacement or force-relative velocity
relations. The nonlinear elastic discrete element has a tabulated force-displacement relation of
the form

f = KAl (16.22)

where K(Al) is the tabulated force that depends on the total change in the length of the element

(Figure 16.1) The nonlinear viscous element has a similar tabulated force-relative velocity
relation:

f=Cc=> (16.23)

where C(i—lt) is the viscous damping force that depends on the rate of change of the element’s

length. Nonlinear discrete elements unload along the loading paths.

If the spring element is initially of zero length and if no orientation vectors are used then
only the tensile part of the stress strain curve needs to be defined. However, if the spring element
is initially of finite length then the curve must be defined in both the positive and negative
quadrants.
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Nonlinear
Elastic/Viscous

Force

Displacement/Velocity

Figure 16.1. Piecewise linear force-displacement curve for nonlinear elastic discrete
element.

16.6 Elasto-Plastic with I'sotropic Hardening

The elasto-plastic discrete element has a bilinear force-displacement relationship that is
specified by the elastic stiffness, a tangent stiffness and a yield force (Figure 16.2). This discrete
element uses the elastic stiffness model for unloading until the yield force is exceeded during
unloading. The yield force is updated to track its maximum value which is equivalent to an
isotropic hardening model. The force-displacement relation during loading may be written as

- K
f=F, (1—?‘j+ KAl (16.24)

where F, is the yield force and K; is the tangent stiffness.
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Elasto-Plastic with
Isotropic Hardening
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F, | f
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Figure 16.2. Loading and unloading force-displacement curves for elasto-plastic discrete
element.

16.7 General Nonlinear

The general nonlinear discrete element allows the user to specify independent and
nonsymmetrical piecewise linear loading and unloading paths (Figure 16.3(a)).

This element combines the features of the above-described nonlinear elastic and elasto-
plastic discrete elements by allowing the user to specify independent initial yield forces in
tension (FyT) and in compression (Fyc). If the discrete element force remains between these
initial yield values, the element unloads along the loading path (Figure 16.3(b)). This
corresponds to the nonlinear elastic discrete element.

However, if the discrete element force exceeds either of these initial yield values, the
specified unloading curve is used for subsequent unloading. Additionally, the initial loading and
unloading curves are allowed to move in the force-displacement space by specifying a mixed
hardening parameter £, where S = 0 corresponds to kinematic hardening (Figure 16.3(c)) and

B =0 F =1 corresponds to isotropic hardening (Figure 16.3(d)).

16.8 Linear Visco-Elastic

The linear viscoelastic discrete element [Schwer, Cheva, and Hallquist 1991] allows the
user to model discrete components that are characterized by force relaxation or displacement
creep behavior. The element’s variable stiffness is defined by three parameters and has the form

K(t) = K_+ (K, -K_)e” (16.25)

where K_ is the long duration stiffness, K, is the short time stiffness, and S is a decay

parameter that controls the rate at which the stiffness transitions between the short and long
duration stiffness (Figure 16.4).
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This model corresponds to a three-parameter Maxwell model (see insert in Figure 16.4)
which consists of a spring and damper in series connected to another spring in parallel. Although
this discrete element behavior could be built up using the above- described linear elastic and
linear viscous discrete elements, such a model would also require the user to specify the nodal
mass at the connection of the series spring and damper. This mass introduces a fourth parameter
which would further complicate fitting the model to experimental data.
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hardening B<1. force

\\ unloading curve

loading force A >0.
curve
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Figure 16.3. Loading and unloading force displacement curves for general nonlinear discrete

element.
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16.9 Muscle M odel

This is Material Type 15 for discrete springs and dampers. This material is a Hill-type

muscle model

with activation. It is for use with discrete elements. The LS-DYNA

implementation is due to Dr. J.A. Weiss.

LO

VMAX

SV

FMAX

TL

TV

FPE

LMAX

KSH

Initial muscle length, Lo.
Maximum CE shortening velocity, Vmax.

Scale factor, Sv, for Vmax vs. active state.
LT.0: absolute value gives load curve 1D
GE.O: constant value of 1.0 is used

Activation level vs. time function.
LT.0: absolute value gives load curve 1D
GE.O: constant value of A is used

Peak isometric force, Fmax.

Active tension vs. length function.
LT.0: absolute value gives load curve 1D
GE.O: constant value of 1.0 is used

Active tension vs. velocity function.
LT.0: absolute value gives load curve 1D
GE.O: constant value of 1.0 is used

Force vs. length function, Fpe, for parallel elastic element.
LT.0: absolute value gives load curve 1D
EQ.O: exponential function is used (see below)
GT.0: constant value of 0.0 is used

Relative length when Fpe reaches Fmax. Required if Fpe=0 above.

Constant, Ksh, governing the exponential rise of Fpe. Required if
Fpe=0 above.
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Figure 16.4. Typical stiffness relaxation curve used for the viscoelastic discrete element.

The material behavior of the muscle model is adapted from the original model proposed
by Hill (1938). Reviews of this model and extensions can be found in Winters (1990) and Zajac
(1989). The most basic Hill-type muscle model consists of a contractile element (CE) and a
parallel elastic element (PE) (Figure 16.5). An additional series elastic element (SEE) can be
added to represent tendon compliance. The main assumptions of the Hill model are that the
contractile element is entirely stress free and freely distensible in the resting state, and is
described exactly by Hill’s equation (or some variation). When the muscle is activated, the series
and parallel elements are elastic, and the whole muscle is a simple combination of identical
sarcomeres in series and parallel. The main criticism of Hill’s model is that the division of forces
between the parallel elements and the division of extensions between the series elements is
arbitrary, and cannot be made without introducing auxiliary hypotheses. However, these
criticisms apply to any discrete element model. Despite these limitations, the Hill model has
become extremely useful for modeling musculoskeletal dynamics, as illustrated by its widespread
use today.

M
0 y Ly

— v cE
M SEE »
| LM PE

>!

Figure 16.5. Discrete model for muscle contraction dynamics, based on a Hill-type
representation. The total force is the sum of passive force F°E and active force

FCE. The passive element (PE) represents energy storage from muscle elasticity,
while the contractile element (CE) represents force generation by the muscle.
The series elastic element (SEE), shown in dashed lines, is often neglected when

a series tendon compliance is included. Here, a(t) is the activation level, LM is
the length of the muscle, and vM is the shortening velocity of the muscle.
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When the contractile element (CE) of the Hill model is inactive, the entire resistance to
elongation is provided by the PE element and the tendon load-elongation behavior. As activation
is increased, force then passes through the CE side of the parallel Hill model, providing the
contractile dynamics. The original Hill model accommodated only full activation - this
limitation is circumvented in the present implementation by using the modification suggested by
Winters (1990). The main features of his approach were to realize that the CE force-velocity
input force equals the CE tension-length output force. This yields a three-dimensional curve to
describe the force-velocity-length relationship of the CE. If the force-velocity y-intercept scales
with activation, then given the activation, length and velocity, the CE force can be determined.

Without the SEE, the total force in the muscle FM is the sum of the force in the CE and
the PE because they are in parallel:

EM _ gPE | CE

The relationships defining the force generated by the CE and PE as a function of LM M
and a(t) are often scaled by F.y, the peak isometric force (p. 80, Winters 1990), L,, the initial
length of the muscle (p. 81, Winters 1990), and V., the maximum unloaded CE shortening
velocity (p. 80, Winters 1990). From these, dimensionless length and velocity can be defined:

M
L=t
LO
VM
Vo *Sy(a(t)

Here, Sy scales the maximum CE shortening velocity V. and changes with activation
level a(t). This has been suggested by several researchers, i.e. Winters and Stark [1985]. The
activation level specifies the level of muscle stimulation as a function of time. Both have values
between 0 and 1. The functions Sy(a(t)) and a(t) are specified via load curves in LS-DYNA, or
default values of Sy=1 and a(t)=0 are used. Note that L is always positive and that V is positive
for lengthening and negative for shortening.

The relationship between F°E, V and L was proposed by Bahler et al. [1967]. A three-
dimensional relationship between these quantities is now considered standard for computer
implementations of Hill-type muscle models [i.e., eqn 5.16, p. 81, Winters 1990]. It can be
written in dimensionless form as:

F = a(t) * Fmax * fTL(L) * fTV (V)

Here, fr_ and fry are the tension-length and tension-velocity functions for active skeletal muscle.
Thus, if current values of L™, V™, and a(t) are known, then F°F can be determined (Figure 16.5).

The force in the parallel elastic element F"* is determined directly from the current length
of the muscle using an exponential relationship [eqn 5.5, p. 73, Winters 1990]:
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FPE 1 K
fo-= = ex sho(L-1) [-1], L>1
. FMAX eXp(Ksh)_l[ p( L ( )] }

max

Here, L, is the relative length at which the force Fs occurs, and Ky, is a dimensionless shape
parameter controlling the rate of rise of the exponential. Alternatively, the user can define a
custom fpg curve giving tabular values of normalized force versus dimensionless length as a load
curve.

For computation of the total force developed in the muscle FM the functions for the
tension-length fr,_ and force-velocity fry relationships used in the Hill element must be defined.
These relationships have been available for over 50 years, but have been refined to allow for
behavior such as active lengthening. The active tension-length curve fr, describes the fact that
isometric muscle force development is a function of length, with the maximum force occurring at
an optimal length. According to Winters, this optimal length is typically around L=1.05, and the
force drops off for shorter or longer lengths, approaching zero force for L=0.4 and L=1.5. Thus
the curve has a bell-shape. Because of the variability in this curve between muscles, the user
must specify the function fr via a load curve, specifying pairs of points representing the
normalized force (with values between 0 and 1) and normalized length L (Figure 16.6).

B 1.50
i S 175 —
il 0.75 o
5" g 1o
§ % 0.75
= 0.50 — =
E: b
N N 0.50—
g 0.25— g
5 5 0.25—]
Z p
0.00 I T 1 0.00 T 1 T 1
0.00 0.25 0.50 0.75 1.001.25 1.50 1.75 2.00 -1.00 -0.75 -0.50-0.25 0.00 0.25 0.50 0.75 1.00
Normalized Length Normalized Velocity

Figure 16.6. Typical normalized tension-length (TL) and tension-velocity (TV) curves for
skeletal muscle.

The active tension-velocity relationship fry used in the muscle model is mainly due to the
original work of Hill. Note that the dimensionless velocity V is used. When V=0, the
normalized tension is typically chosen to have a value of 1.0. When V is greater than or equal to
0, muscle lengthening occurs. As V increases, the function is typically designed so that the force
increases from a value of 1.0 and asymptotes towards a value near 1.4. When V is less than zero,
muscle shortening occurs and the classic Hill equation hyperbola is used to drop the normalized
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tension to O (Figure 16.6). The user must specify the function fry via a load curve, specifying
pairs of points representing the normalized tension (with values between 0 and 1) and normalized
velocity V.

16.10 Seat Belt Material

The seat belt capability reported here was developed by Walker and co-workers [Walker
and Dallard 1991, Strut, Walker, etal., 1991] and this section excerpted from their
documentation. Each belt material defines stretch characteristics and mass properties for a set of
belt elements. The user enters a load curve for loading, the points of which are (Strain, Force).
Strain is defined as engineering strain, i.e.

Srain — c_ur_rfant length
initial length

Another similar curve is entered to describe the unloading behavior. Both loadcurves should
start at the origin (0,0) and contain positive force and strain values only. The belt material is
tension only with zero forces being generated whenever the strain becomes negative. The first
non-zero point on the loading curve defines the initial yield point of the material. On unloading,
the unloading curve is shifted along the strain axis until it crosses the loading curve at the “yield’
point from which unloading commences. If the initial yield has not yet been exceeded or if the
origin of the (shifted) unloading curve is at negative strain, the original loading curves will be
used for both loading and unloading. If the strain is less than the strain at the origin of the
unloading curve, the belt is slack and no force is generated. Otherwise, forces will then be
determined by the unloading curve for unloading and reloading until the strain again exceeds
yield after which the loading curves will again be used.

A small amount of damping is automatically included. This reduces high frequency
oscillation, but, with realistic force-strain input characteristics and loading rates, does not
significantly alter the overall forces-strain performance. The damping forced opposes the relative
motion of the nodes and is limited by stability:

_ .1xmass x relative velocity
timestep size

D

In addition, the magnitude of the damping forces is limited to one tenth of the force calculated
from the forces-strain relationship and is zero when the belt is slack. Damping forces are not
applied to elements attached to sliprings and retractors.

The user inputs a mass per unit length that is used to calculate nodal masses on
initialization.

A ‘minimum length’ is also input. This controls the shortest length allowed in any
element and determines when an element passes through sliprings or are absorbed into the
retractors. One tenth of a typical initial element length is usually a good choice.
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16.11 Seat Belt Elements

Belt elements are single degree of freedom elements connecting two nodes and are treated
in a manner similar to the spring elements. When the strain in an element is positive (i.e., the
current length is greater then the unstretched length), a tension force is calculated from the
material characteristics and is applied along the current axis of the element to oppose further
stretching. The unstretched length of the belt is taken as the initial distance between the two
nodes defining the position of the element plus the initial slack length. At the beginning of the
calculation the seatbelt elements can be obtained within a retractor.

16.12 Sliprings

Sliprings are defined in the LS-DYNA input by giving a slipring ID and element ID’s for
two elements who share a node which is coincident with the slipring node. The slipring node
may not be attached to any belt elements.

Sliprings allow continuous sliding of a belt through a sharp change of angle. Two
elements (1 and 2 in Figure 16.5) meet at the slipring. Node B in the belt material remains
attached to the slipring node, but belt material (in the form of unstretched length) is passed from
element 1 to element 2 to achieve slip. The amount of slip at each timestep is calculated from the
ratio of forces in elements 1 and 2. The ratio of forces is determined by the relative angle
between elements 1 and 2 and the coefficient of friction, u. The tension in the belts is taken as
T1 and Ty, where T» is on the high-tension side and T1 is the force on the low-tension side. Thus

if To is sufficiently close to T1 no slip occurs; otherwise, slip is just sufficient to reduce the ratio

To/T1 to eM®. No slip occurs if both elements are slack. The out-of-balance force at node B is
reacted on the slipring node; the motion of node B follows that of slipring node.

If, due to slip through the slipring, the unstretched length of an element becomes less than
the minimum length (as entered on the belt material card), the belt is remeshed locally: the short
element passes through the slipring and reappears on the other side (see Figure 16.5). The new
unstretched length of el is 1.1 x minimum length. Force and strain in e2 and e3 are unchanged,;
force and strain in el are now equal to those in e2. Subsequent slip will pass material from e3 to
el. This process can continue with several elements passing in turn through the slipring.

To define a slipring, the user identifies the two belt elements which meet at the slipring,
the friction coefficient, and the slipring node. The two elements must have a common node
coincident with the slipring node. No attempt should be made to restrain or constrain the
common node for its motion will automatically be constrained to follow the slipring node.
Typically, the slipring node is part of the vehicle body structure and, therefore, belt elements
should not be connected to this node directly, but any other feature can be attached, including
rigid bodies.

16.13 Retractors

Retractors are defined by giving a node, the “retractor node” and an element ID of an
element outside the retractor but with one node that is coincident with the retractor node. Also
sensor ID’s must be defined for up to four sensors which can activate the seatbelt.

Retractors allow belt material to be paid out into a belt element, and they operate in one
of two regimes: unlocked when the belt material is paid out or reeled in under constant tension
and locked when a user defined force-pullout relationship applies.
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Slipring
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Figure 16.5. Elements passing through slipring.

The retractor is initially unlocked, and the following sequence of events must occur for it
to become locked:

1. Any one of up to four sensors must be triggered. (The sensors are described
below).

2. Then a user-defined time delay occurs.

3. Then a user-defined length of belt must be payed out (optional).

4. Then the retractor locks.

and once locked, it remains locked.

In the unlocked regime, the retractor attempts to apply a constant tension to the belt. This
feature allows an initial tightening of the belt, and takes up any slack whenever it occurs. The
tension value is taken from the first point on the force-pullout load curve. The maximum rate of
pull out or pull in is given by 0.01 x fed length per time step. Because of this, the constant
tension value is not always achieved.

In the locked regime, a user-defined curve describes the relationship between the force in
the attached element and the amount of belt material paid out. If the tension in the belt
subsequently relaxes, a different user-defined curve applies for unloading. The unloading curve
is followed until the minimum tension is reached.

The curves are defined in terms of initial length of belt. For example, if a belt is marked
at 10mm intervals and then wound onto a retractor, and the force required to make each mark
emerge from the (locked) retractor is recorded, the curves used for input would be as follows:
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0  Minimum tension (should be > zero)
10mm  Force to emergence of first mark
20mm  Force to emergence of second mark

Pyrotechnic pretensions may be defined which cause the retractor to pull in the belt at a
predetermined rate. This overrides the retractor force-pullout relationship from the moment
when the pretensioner activates.

If desired, belt elements may be defined which are initially inside the retractor. These
will emerge as belt material is paid out, and may return into the retractor if sufficient material is
reeled in during unloading.

Elements e2, e3 and e4 are initially inside the retractor, which is paying out material into

element el. When the retractor has fed L, into e1, where:

Lerit = fed length - 1.1 x minimum length
(minimum length defined on belt material input)
(fed length defined on retractor input)

element e2 emerges with an unstretched length of 1.1 x minimum length; the unstretched length
of element el is reduced by the same amount. The force and strain in el are unchanged; in e2,
they are set equal to those in el. The retractor now pays out material into e2.

If no elements are inside the retractor, e2 can continue to extend as more material is fed
into it.

As the retractor pulls in the belt (for example, during initial tightening), if the unstretched
length of the mouth element becomes less than the minimum length, the element is taken into the
retractor.

To define a retractor, the user enters the retractor node, the ‘mouth’ element (into which
belt material will be fed, el in Figure 16.6, up to 4 sensors which can trigger unlocking, a time
delay, a payout delay (optional), load and unload curve numbers, and the fed length. The
retractor node is typically part of the vehicle stricture; belt elements should not be connected to
this node directly, but any other feature can be attached including rigid bodies. The mouth
element should have a node coincident with the retractor but should not be inside the retractor.
The fed length would typically be set either to a typical element initial length, for the distance
between painted marks on a real belt for comparisons with high-speed film. The fed length
should be at least three times the minimum length.

If there are elements initially inside the retractor (e2, e3 and e4 in the Figure) they should
not be referred to on the retractor input, but the retractor should be identified on the element
input for these elements. Their nodes should all be coincident with the retractor node and should
not be restrained or constrained. Initial slack will automatically be set to 1.1 x minimum length
for these elements; this overrides any user-defined value.

Weblockers can be included within the retractor representation simply by entering a
‘locking up’ characteristic in the force pullout curve, see Figure 16.7. The final section can be
very steep (but must have a finite slope).
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Figure 16.6. Elements in a retractor.
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Figure 16.7. Retractor force pull characteristics.
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16.14 Sensors
Sensors are used to trigger locking of retractors and activate pretensioners. Four types of
sensor are available which trigger according to the following criteria:

Typel — When the magnitude of x-, y-, or z- acceleration of a given node has
remained above a given level continuously for a given time, the
sensor triggers. This does not work with nodes on rigid bodies.

Type2 — When the rate of belt payout from a given retractor has remained
above a given level continuously for a given time, the sensor
triggers.

Type3 — The sensor triggers at a given time.

Typed4 — The sensor triggers when the distance between two nodes exceeds a

given maximum or becomes less than a given minimum. This type
of sensor is intended for use with an explicit mas/spring
representation of the sensor mechanism.

By default, the sensors are inactive during dynamic relaxation. This allows initial tightening of
the belt and positioning of the occupant on the seat without locking the retractor or firing any
pretensioners. However, a flag can be set in the sensor input to make the sensors active during
the dynamic relaxation phase.

16.15 Pretensioners

Pretensioners allow modeling of three types of active devices which tighten the belt
during the initial stages of a crash. The first type represents a pyrotechnic device which spins the
spool of a retractor, causing the belt to be reeled in. The user defines a pull-in versus time curve
which applies once the pretensioner activates. The remaining types represents preloaded springs
or torsion bars which move the buckle when released. The pretensioner is associated with any
type of spring element including rotational. Note that the preloaded spring, locking spring and
any restraints on the motion of the associated nodes are defined in the normal way; the action of
the pretensioner is merely to cancel the force in one spring until (or after) it fires. With the
second type, the force in the spring element is cancelled out until the pretensioner is activated. In
this case the spring in question is normally a stiff, linear spring which acts as a locking
mechanism, preventing motion of the seat belt buckle relative to the vehicle. A preloaded spring
is defined in parallel with the locking spring. This type avoids the problem of the buckle being
free to “drift” before the pretensioner is activated.

To activate the pretensioner the following sequence of events must occur:
1. Any one of up to four sensors must be triggered.
2. Then a user-defined time delay occurs.
3. Then the pretensioner acts.
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16.16 Accelerometers
The accelerometer is defined by three nodes in a rigid body which defines a triad to

measure the accelerations in a local system. The presence of the accelerometer means that the
accelerations and velocities of node 1 will be output to all output files in local instead of global

coordinates.

The local coordinate system is defined by the three nodes as follows:
* local x from node 1 to node 2
» local z perpendicular to the plane containing nodes, 1, 2, and 3 (z=x X a),
where a is from node 1 to node 3).
* localy=xxz

The three nodes should all be part of the same rigid body. The local axis then rotates with the
body.
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17. SMPLIFIED ARBITRARY LAGRANGIAN-EULERIAN

Arbitrary Lagrangian-Eulerian (ALE) formulations may be thought of as algorithms that
perform automatic rezoning. Users perform manual rezoning by

1. Stopping the calculation when the mesh is distorted,
2. Smoothing the mesh,
3. Remapping the solution from the distorted mesh to the smooth mesh.

An ALE formulation consists of a Lagrangian time step followed by a “remap” or
“advection” step. The advection step performs an incremental rezone, where “incremental”
refers to the fact that the positions of the nodes are moved only a small fraction of the
characteristic lengths of the surrounding elements. Unlike a manual rezone, the topology of the
mesh is fixed in an ALE calculation. An ALE calculation can be interrupted like an ordinary
Lagrangian calculation and a manual rezone can be performed if an entirely new mesh is
necessary to continue the calculation.

The accuracy of an ALE calculation is often superior to the accuracy of a manually
rezoned calculation because the algorithm used to remap the solution from the distorted to the
undistorted mesh is second order accurate for the ALE formulation while the algorithm for the
manual rezone is only first order accurate.

In theory, an ALE formulation contains the Eulerian formulation as a subset. Eulerian
codes can have more than one material in each element, but most ALE implementations are
simplified ALE formulations which permit only a single material in each element. The primary
advantage of a simplified formulation is its reduced cost per time step. When elements with
more than one material are permitted, the number and types of materials present in an element
can change dynamically. Additional data is necessary to specify the materials in each element
and the data must be updated by the remap algorithms.

The range of problems that can be solved with an ALE formulation is a direct function of
the sophistication of the algorithms for smoothing the mesh. Early ALE codes were not very
successful largely because of their primitive algorithms for smoothing the mesh. In simplified
ALE formulations, most of the difficulties with the mesh are associated with the nodes on the
material boundaries. If the material boundaries are purely Lagrangian, i.e., the boundary nodes
move with the material at all times, no smooth mesh maybe possible and the calculation will
terminate. The algorithms for maintaining a smooth boundary mesh are therefore as important to
the robustness of the calculations as the algorithms for the mesh interior.

The cost of the advection step per element is usually much larger than the cost of the
Lagrangian step. Most of the time in the advection step is spent in calculating the material
transported between the adjacent elements, and only a small part of it is spent on calculating how
and where the mesh should be adjusted. Second order accurate monotonic advection algorithms
are used in LS-DYNA despite their high cost per element because their superior coarse mesh
accuracy which allows the calculation to be performed with far fewer elements than would be
possible with a cheaper first order accurate algorithm.

The second order transport accuracy is important since errors in the transport calculations
generally smooth out the solution and reduce the peak values in the history variables. Monotonic
advection algorithms are constructed to prevent the transport calculations from creating new
minimum or maximum values for the solution variables. They were first developed for the
solution of the Navier Stokes equations to eliminate the spurious oscillations that appeared
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around the shock fronts. Although monotonic algorithms are more diffusive than algorithms that
are not monotonic, they must be used for stability in general purpose codes. Many constitutive
models have history variables that have limited ranges, and if their values are allowed to fall
outside of their allowable ranges, the constitutive models are undefined. Examples include
explosive models, which require the burn fraction to be between zero and one, and many
elastoplasticity models, such as those with power law hardening, which require a non-negative
plastic strain.
The overall flow of an ALE time step is:

1. Perform a Lagrangian time step.

2. Perform an advection step.

Decide which nodes to move.

Move the boundary nodes.

Move the interior nodes.

Calculate the transport of the element-centered variables.
Calculate the momentum transport and update the velocity.

o0 o

Each element solution variable must be transported. The total number of solution
variables, including the velocity, is at least six and depends on the material models. For elements
that are modeled with an equation of state, only the density, the internal energy, and the shock
viscosity are transported. When the elements have strength, the six components of the stress
tensor and the plastic strain must also be advected, for a total of ten solution variables.
Kinematic hardening, if it is used, introduces another five solution variables, for a total of fifteen.

The nodal velocities add an extra three solution variables that must be transported, and
they must be advected separately from the other solution variables because they are centered at
the nodes and not in the elements. In addition, the momentum must be conserved, and it is a
product of the node-centered velocity and the element-centered density. This imposes a
constraint on how the momentum transport is performed that is unique to the velocity field. A
detailed consideration of the difficulties associated with the transport of momentum is deferred
until later.

Perhaps the simplest strategy for minimizing the cost of the ALE calculations is to
perform them only every few time steps. The cost of an advection step is typically two to five
times the cost of the Lagrangian time step. By performing the advection step only every ten
steps, the cost of an ALE calculation can often be reduced by a factor of three without adversely
affecting the time step size. In general, it is not worthwhile to advect an element unless at least
twenty percent of its volume will be transported because the gain in the time step size will not
offset the cost of the advection calculations.

17.1 Mesh Smoothing Algorithms

The algorithms for moving the mesh relative to the material control the range of the
problems that can be solved by an ALE formulation. The equipotential method which is used in
LS-DYNA was developed by Winslow [1990] and is also used in the DYNA2D ALE code
[Winslow 1963]. It, and its extensions, have proven to be very successful in a wide variety of
problems. The following is extracted from reports prepared by Alan Winslow for LSTC.
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17.1.1 Equipotential Smoothing of Interior Nodes

“Equipotential” zoning [Winslow, 1963] is a method of making a structured mesh for
finite difference or finite element calculations by using the solutions of Laplace equations (later
extended to Poisson equations) as the mesh lines. The same method can be used to smooth
selected points in an unstructured three-dimensional mesh provided that it is at least locally
structured. This chapter presents a derivation of the three-dimensional equipotential zoning
equations, taken from the references, and gives their finite difference equivalents in a form ready
to be used for smoothing interior points. We begin by reviewing the well-known two-
dimensional zoning equations, and then discuss their extension to three dimensions.

In two dimensions we define curvilinear coordinates & which satisfy Laplace’s
equation:

V2£=0 (17.1.1a)
V2p=0 (17.1.1b)

We solve Equations (16.1.1) for the coordinates x(&,77) andy(&,n7) of the mesh lines:
that is, we invert them so that the geometric coordinates X,y become the dependent variables
and the curvilinear coordinates &,7 the independent variables. By the usual methods of
changing variables we obtain

OXsz = 2%, + 7%, =0 (17.1.23)
Y = 23Yz, + 7Y,, =0 (17.1.2b)

where
A= X+ Yo = Xe Xy + Ve YV = X + Vi (17.1.3)

Equations (17.1.2) can be written in vector form:
gz =20 + 1y =0 (17.1.4)
where
r= XiA+ y] )

We differentiate Equations (17.1.4) and solve them numerically by an iterative method,
since they are nonlinear. In (&,77) space, we use a mesh whose curvilinear coordinates are
straight lines which take on integer values corresponding to the usual numbering in a two-
dimensional mesh. The numerical solution then gives us the location of the “equipotential” mesh
lines.
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In three dimensions Xy, z, we add a third curvilinear coordinate ¢ and a third Laplace
equation

V2 =0 (17.1.1¢)

Inversion of the system of three equations (17.1.1) by change of variable is rather
complicated. It is easier, as well as more illuminating, to use the methods of tensor analysis

pioneered by Warsi [1982]. Let the curvilinear coordinates be represented by &' (i=1,2,3). Fora
scalar function A(xy,2), Warsi shows that the transformation of its Laplacian from rectangular
Cartesian to curvilinear coordinates is given by

3 . 3
VZA= ¥ g'A, + 2 (V2E)A, (17.1.5)
ij=1 ¢ k2 ¢

where a variable subscript indicates differentiation with respect to that variable. Since the
curvilinear coordinates are each assumed to satisfy Laplace’s equation, the second summation in
Equation (17.1.5) vanishes and we have

3 .
VA=Y g'A,, - (17.1.6)
i e

If now we let A= X, y,and zsuccessively, the left-hand side of (17.1.6) vanishes in each
case and we get three equations which we can write in vector form

=0 (17.1.7)

Equation (17.1.7) is the three-dimensional generalization of Equations (17.1.4), and it
only remains to determine the components of the contravariant metric tensor g; in three

dimensions. These are defined to be

a-al (17.1.8)

g’

where the contravariant base vectors of the transformation from (xy,2) to (&', &%, &%) are
given by

a; X &
\/E (17.1.9)

(i,j,k cyclic). Here the covariant base vectors, the coordinate derivatives, are given by

éi EVfi —

&

g (17.1.10)
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where

r X|+y'+j2,

Also,
g=detg; = [5-1 (&, Xas)]z =J?

where g; is the covariant metric tensor given by

0ij =4 - 4,

and J is the Jacobian of the transformation.
Substituting (17.1.9) into (17.1.8), and using the vector identity

(éxB)-(éxa)

(a-c)-(b-d)—(a-d)(b-c)
we get

a; _(éj 'ak)z = 0ji Gk _(gjk)z

Q
Q—
Il
—
2

QD

'_’k)(_'j 'é:k)_<ai -4 )éf = Oik9jk — Yij 9w -

(17.1.11a)

(17.1.11b)

(17.1.12)

(17.1.13a)

(17.1.13b)

Before substituting (17.1.10) into (17.1.13a, b), we return to our original notation:

§+& &, 0+ 8

Then, using (17.1.10), we get

(17.1.14)

(17.1.15a)

(17.1.15b)

(17.1.15¢)

(17.1.16a)

(17.1.16b)

(17.1.16c)
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for the three off-diagonal components of this symmetric tensor.
When we express Equations (17.1.15) in terms of the Cartesian coordinates, some
cancellation takes place and we can write them in the form

007 = 0¥, %Y, )+ 2 %2+ 0% -yez)t (17.1178)
997 = (4 Vs - %Y ) + (% Z - %2 ) + (V2 - Ve )’ (17.1.17b)
997 = (XY, - X, ¥6 ) + (%2, - %,Z: )" + (¥:2, - ¥, 2 )’ (17.1.17c)

guaranteeing positivity as required by Equations (17.1.8). Writing out Equations (17.1.16) we
get

99" = (KXY Y+ 22, )XY, Y+ 2,2 )

(17.1.18a)
- (%X, VY, +2:2,) (XY +Z)
99% = (X, X:+Y, Y:+2,Z. )(X XY, Y:+2, 2. )
Xy Xet Yy YeT 2, 2; ;4; ;25 2: s (17.1.18b)
S (X XY, Y22 ) (X + Y+ Z)
99 = (XX, +Y, Y, t 2,2, ) (XX, T Y Y, t Z:2, )
XY Yt 47, §Xr27 52'7 2547 (17.1.18¢)
(XY Y22 ) (X Y, +2)
Hence, we finally write Equations (17.1.7) in the form
g(g“@i +9%F, +9%7,, +29"F,, +297T . + 2g31f§§): 0 (17.19)

where the gg" are given by Equations (17.1.17) and (17.1.18). Because Equations (17.1.7) are

homogeneous, we can use gg' in place of g’ as long as g is positive, as it must be for a

nonsingular transformation. We can test for positivity at each mesh point by using Equation
(17.1.20):

X Ye %
X Yo Z

and requiring that J>0.

To check that these equations reproduce the two-dimensional equations when there is no
variation in one-dimension, we take { as the invariant direction, thus reducing (17.1.19) to
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09''7;: + 2997, + 99°f,, =0 (17.1.22)

If we let ¢ =z, then the covariant base vectors become

& =X + Y] (17.1.22a)
a =X, +Y,] (17.1.22b)
a, = k (17.1.22¢)
From (17.1.22), using (17.1.13), we get
g9t = X2 +y; (17.1.23a)
99” = X + y£ (17.1.23b)
99" =—(X:X, + ¥eY,) - (17.1.23c)

Substituting (17.1.23) into (17.1.21) yields the two-dimensional equipotential zoning Equations
(17.1.2)I§efore differencing Equations (17.1.19) we simplify the notation and write them in the
form
4Tz + O, + T + 28T + 2551, + 2857, =0 (17.1.24)
where
o = (XY =X ¥,)2 + (%2 = %X, 2,) + (¥, 2, = ¥¢Z,)° (17.1.25a)
oy = (XY = XY )P+ (X2 = X:2:) 2 + (Y, 22 — Vezg)° (17.1.25b)

5 = (Xe Y, = %, ¥i)? + (XeZ, = %,2:) + (Y2, — ¥, 2:)° (17.1.25¢)

B = (XeXp + VeV +2:20) (%X + Yy Yo +2,2;)

., . (17.1.250)
= (XX + Ve Yy +2:2,) (X + Y +7;)

By = (Xy Xz + ¥ Y + 2,22 ) (XeXg + Ve Y +2:7;)

., . (17.1.25¢)
= (X Xy + Y Yy +2,2))(X; + e +Z)
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By = (%% +Y,Y: + 202 (%, + Y ¥y + 2:2,)

) , o (17.1.25f)
- (xgxn +VYeY, + zgzn)(x,] +y,+ zﬂ)

We difference Equations (17.1.24) in a cube in the rectangular £n¢ space with unit
spacing between the coordinate surfaces, using subscript i to represent the & direction, j the 7

direction, and k the ¢ direction, as shown in Figure 17.1.

k+1

1

i+1

i1

¢ k-1
Lo
g
Figure17.l.

Using central differencing, we obtain the following finite difference approximations for
the coordinate derivatives:

P =(Fy—Fq)/2 (17.1.26a)
F, = (Pl — s )/2 (17.1.26b)
Fr = (g —Fis)/2 (17.1.26c)
M = (F, —2F +7y) (17.1.26d)
By = (Tl =27 +7,1) (17.1.26¢)
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For = (f = 27 +Ty) (17.1.26f)
Ty = %[(Fm,m LR B (S S| (17.1.260)
e = % [(F,-+1,k+1 +Fapen) = (Faaper + P ) (17.1.26h)
T = % [(Frsaiens + Faies) = (Fraages + g )] (17.1.26i)

where for brevity we have omitted subscripts i, j, or k (e.g., k+1 stands for i, j,k+1). Note

that these difference expressions use only coordinate planes that pass through the central point,
and therefore do not include the eight corners of the cube.
Substituting Equations (17.1.26) into (17.1.24,17.1.25) and collecting terms, we get

S o (Pm=T)=0 (17.1.27)
m=1

where the sum is over the 18 nearest (in the transform space) neighbors of the given point. The
coefficients w,, are given in Table 17.1.

Equations (17.1.27) can be written

Za)m Tm
wm

expressing the position of the central point as a weighted mean of its 18 nearest neighbors. The
denominator of (17.1.28) is equal to 2(o+op+03) which is guaranteed to be positive by
(17.1.25). This vector equation is equivalent to the three scalar equations

zwmxm
x="0 (17.1.29a)

m (17.1.29b)
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m Index ®m

1 i+1 o

2 i—1 o

3 j+l 0

4 -1 o

5 k+1 03

6 k-1 03

7 i+1, j+1 B
8 i-1, j-1 By2

9 i+1, j-1 —By2
10 i—1, j+1 —By2
11 j+1, k+1 B2
12 -1, k-1 B2
13 j*+1, k=1 —B22
14 -1, k+1 —B22
15 i+1, k+1 B32
16 i—1, k-1 B32
17 i+1, k=1 —Ba2
18 i—1, k+1 —Ba2

Table 17.1. 3D Zoning Weight Coefficients

zwmzm
m

2 W,

m

z= (17.1.29c)

the same weights @,, appearing in each equation.

These equations are nonlinear, since the coefficients are functions of the coordinates.
Therefore we solve them by an iterative scheme, such as SOR. When applied to Equation
(17.1.29a), for example, this gives for the (n+1)t iteration

Ay X
n+l _ n rzn: mem
X =@0Q-f)x"+f S (17.1.30)

m
m
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where the over relaxation factor f must satisfy 0<f<2. In (17.1.30) the values of x at the

neighboring points are the latest available values. The coefficients w,, are recalculated before

each iteration using Table 17.1 and Equations (17.1.25).

To smooth one interior point in a three-dimensional mesh, let the point to be smoothed be
the interior point of Figure 17.1, assuming that its neighborhood has the logical structure shown.
Even though Equations (17.1.29) are nonlinear, the @,, do not involve the coordinates of the

central point, since the a’s and B’s do not. Hence we simply solve Equations (17.1.29) for the
new coordinates (X, Y, 2), holding the 18 neighboring points fixed, without needing to iterate.

If we wish to smooth a group of interior points, we solve iteratively for the coordinates
using equations of the form (17.1.30).

17.1.2 SimpleAveraging
The coordinates of a node is the simple average of the coordinates of its surrounding
nodes.

. L i
Xl =—— > X (17.1.31)

17.1.3 Kikuchi’sAlgorithm

Kikuchi proposed an algorithm that uses a volume-weighted average of the coordinates
of the centroids of the elements surrounding a node. Variables that are subscripted with Greek
letters refer to element variables, and subscripts with capital letters refer to the local node
numbering within an element.

—»n_
Xy =

Y xh (17.1.32a)
A

|

atOt
3 VaXg
Xt =ot (17.1.32b)

atot

2V,

a=1

17.1.4 Surface Smoothing

The surfaces are smoothed by extending the two-dimensional equipotential stencils to
three dimensions. Notice that the form of Equation (17.1.2a) and (17.1.2b) for the x and y
directions are identical. The third dimension, z, takes the same form. When Equation (16.1.2)
is applied to all three dimensions, it tends to flatten out the surface and alter the total volume. To
conserve the volume and retain the curvature of the surface, the point given by the relaxation
stencil is projected on to the tangent plane defined by the normal at the node.

17.1.5 Combining Smoothing Algorithms

The user has the option of using a weighted average of all three algorithms to generate a
composite algorithm, where the subscripts E, SA, and K refer to the equipotential, simple
averaging, and Kikuchi’s smoothing algorithm respectively, and ww is the weighting factor.

o+l o+l on+l o+l
X7 = WeXE ™ + WgaXga + Wi X (17.1.33)
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17.2 Advection Algorithms

LS-DYNA follows the SALE3D strategy for calculating the transport of the element-
centered variables (i.e., density, internal energy, the stress tensor and the history variables). The
van Leer MUSCL scheme [van Leer 1977] is used instead of the donor cell algorithm to calculate
the values of the solution variables in the transport fluxes to achieve second order accurate
monotonic results. To calculate the momentum transport, two algorithms have been
implemented. The less expensive of the two is the one that is implemented in SALE3D, but it
has known dispersion problems and may violate monotonocity (i.e., introduce spurious
oscillations) [Benson 1992]. As an alternative, a significantly more expensive method [Benson
1992], which can be shown analytically to not have either problem on a regular mesh, has also
been implemented.

In this section the donor cell and van Leer MUSCL scheme are discussed. Both methods
are one-dimensional and their extensions to multidimensional problems are discussed later.

17.2.1 Advection Methodsin One Dimension

In this section the donor cell and van Leer MUSCL scheme are discussed. Both methods
are one-dimensional and their extensions to multidimensional problems are discussed later.

The remap step maps the solution from a distorted Lagrangian mesh on to the new mesh.
The underlying assumptions of the remap step are 1) the topology of the mesh is fixed (a
complete rezone does not have this limitation), and 2) the mesh motion during a step is less than
the characteristic lengths of the surrounding elements. Within the fluids community, the second
condition is simply stated as saying the Courant number, C, is less than one.

At f
c=ut_T (17.2.1)
Ax V

Since the mesh motion does not occur over any physical time scale, At is arbitrary, and
UAL is the transport volume, f, between adjacent elements. The transport volume calculation is
purely geometrical for ALE formulations and it is not associated with any of the physics of the
problem.

The algorithms for performing the remap step are taken from the computational fluids
dynamics community, and they are referred to as “advection” algorithms after the first order,
scalar conservation equation that is frequently used as a model hyperbolic problem.

@+a(x)@=0
a oX

(17.2.2)

A good advection algorithm for the remap step is accurate, stable, conservative and
monotonic. Although many of the solution variables, such as the stress and plastic strain, are not
governed by conservation equations like momentum and energy, it is still highly desirable that
the volume integral of all the solution variables remain unchanged by the remap step.
Monotonicity requires that the range of the solution variables does not increase during the remap.
This is particularly important with mass and energy, where negative values would lead to
physically unrealistic solutions.

Much of the research on advection algorithms has focused on developing monotonic
algorithms with an accuracy that is at least second order. Not all recent algorithms are
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monotonic. For example, within the finite element community, the streamline upwind Petrov-
Galerkin (SUPG) method developed by Hughes and coworkers [Brooks and Hughes 1982] is not
monotonic. Johnson et al., [1984] have demonstrated that the oscillations in the SUPG solution
are localized, and its generalization to systems of conservation equations works very well for the
Euler equations. Mizukami and Hughes [1985] later developed a monotonic SUPG formulation.
The essentially non-oscillatory (ENO) [Harten 1989] finite difference algorithms are also not
strictly monotonic, and work well for the Euler equations, but their application to hydrodynamics
problems has resulted in negative densities [McGlaun 1990]. Virtually all the higher order
methods that are commonly used were originally developed for solving the Euler equations,
usually as higher order extensions to Godunov’s method. Since the operator split approach is the
dominant one in Eulerian hydrocodes, these methods are implemented only to solve the scalar
advection equation.

The Donor Cell Algorithm. Aside from its first order accuracy, it is everything a good
advection algorithm should be: stable, monotonic, and simple. The value of fj‘” is dependent on
the sign of aat node j, which defines the upstream direction.

n+1

At
J+}/ ¢J+}/ AX ( flﬁil) (17.2.3a)

o~ a( , %yj '( e %yj (17.2.30)

The donor cell algorithm is a first order Godunov method applied to the advection equation. The

n n
initial values of ¢ to the left and the right of node | are ¢j—% and ¢j+y, and the velocity of the
contact discontinuity at node | is ;.

The Van Leer MUSCL Algorithm. Van Leer [1977] introduced a family of higher order
Godunov methods by improving the estimates of the initial values of left and right states for the
Riemann problem at the nodes. The particular advection algorithm that is presented in this
section is referred to as the MUSCL (monotone upwind schemes for conservation laws)
algorithm for brevity, although MUSCL really refers to the family of algorithms that can be
applied to systems of equations.

The donor cell algorithm assumes that the distribution of ¢ is constant over an element.

Van Leer replaces the piecewise constant distribution with a higher order interpolation function,

n
¢j+% (x) that is subject to an element level conservation constraint. The value of ¢ at the
element centroid is regarded in this context as the average value of ¢ over the element instead of

the spatial value at *j+2;.

¢n _ XJ+1 ¢J+y(x)dx (17.2.4)

b T
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min max

To determine the range of ¢, [¢j+%’¢j+%] for imposing the monotonicity constraint,

n n n
the maximum and minimum values of ?j- 2 ¢j+%, and ¢j+% are used. Monotonicity can be
imposed in either of two ways. The first is to require that the maximum and minimum values of

¢jn+% (x) fall within the range determined by the three elements. The second is to restrict the
average value of ¢ in the transport volumes associated with element j + 1/2. While the
difference may appear subtle, the actual difference between the two definitions is quite
significant even at relatively low Courant numbers. The second definition allows the magnitude
of the ¢ transported to adjacent elements to be larger than the first definition. As a consequence,
the second definition is better able to transport solutions with large discontinuities. The
magnitude of ¢ an algorithm is able to transport before its monotonicity algorithm restricts ¢ is

1~ kL

a measure of the algorithm’s “compressiveness.”

The first step up from a piecewise constant function is a piecewise linear function, where
x is now the volume coordinate. The volume coordinate of a point is simply the volume swept
along the path between the element centroid and the point. Conservation is guaranteed by
expanding the linear function about the element centroid.

9y, () =Sy (X=X{ ) +0] ) (17.2.5)

n
Letting Sj+% be a second order approximation of the slope, the monotonicity limited

n
value of the slope, Sj+}/ , according to the first limiting approach, is determined by assuming the
maximum permissible values at the element boundaries.

n 1 : n
Sy = E(sgn(sL) +sgn(s”) )x mmOsL‘, sj+%‘, ‘SRD (17.2.6a)
st = w (17.2.6Db)
EAXH%
3, 9},
S® = M (17.2.6¢)

—AX.
2 ik

The second limiter is similar to the first, but it assumes that the maximum permissible
values occur at the centroid of the transport volumes. Note that as stated in Equation (17.2.6),
this limiter still limits the slope at the element boundary even if the element is the downstream
element at that boundary. A more compressive limiter would not limit the slope based on the
values of ¢ at the downstream boundaries. For example, if aj is negative, only sR would limit the
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value of sh in Equation (17.2.6). If the element is the downstream element at both boundaries,
then the slope in the element has no effect on the solution.

¢y — 0
L_ i Tk
c T 1Ax —lmax(o a.At) (7272
272 e
¢jn+3 _¢jn+
st=1 T (17.2.7b)

1 .
5 xj+% + 5 min(0, a;,,At)

The flux at node j is evaluated using the upstream approximation of ¢.

=7‘(¢J vor )+ 2l o) (17.2.80)
=g }/(x SRR ATY (17.2.8b)
=81 0 =X )+ ey (17.2.8¢)

x© =X +%Ataj (17.2.8d)

The method for obtaining the higher order approximation of the slope is not unique.
Perhaps the simplest approach is to fit a parabola through the centroids of the three adjacent

elements and evaluate its slope at xj”%. When the value of ¢ at the element centroids is
assumed to be equal to the element average this algorithm defines a projection.

" (¢1n+% Oy, jAX‘? ’ (¢1n+}/ iy )AX’Z“ (17.2.9a)

% AX; Ale(Ax +Ax]+1)

_yN N
AXj = X[y =X 1 (17.2.9b)
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17.2.2 Advection Methodsin Three Dimensions

For programs that use a logically regular mesh, one-dimensional advection methods are
extended to two and three dimensions by using a sequence of one-dimensional sweeps along the
logically orthogonal mesh lines. This strategy is not possible for unstructured meshes because
they don’t have uniquely defined sweep directions through the mesh. CAVEAT [Addessio,
et al., 1986] uses one-dimensional sweeps in the spatial coordinate system, but their approach is
expensive relative to the other algorithms and it does not always maintain spherical symmetry,
which is an important consideration in underwater explosion calculations.

The advection in LS-DYNA is performed isotropically. The fluxes through each face of
element A are calculated simultaneously, but the values of ¢ in the transport volumes are

calculated using the one-dimensional expressions developed in the previous sections.

6
Pt = L (,{‘¢R+ _zlff’] (17.2.10)
J:

n+l
VA

The disadvantage of isotropic advection is that there is no coupling between an element
and the elements that are joined to it only at its corners and edges (i.e., elements that don’t share
faces). The lack of coupling introduces a second order error that is significant only when the
transport is along the mesh diagonals.

The one-dimensional MUSCL scheme, which requires elements on either side of the
element whose transport is being calculated, cannot be used on the boundary elements in the
direction normal to the boundary. Therefore, in the boundary elements, the donor cell algorithm
is used to calculate the transport in the direction that is normal to the boundary, while the
MUSCL scheme is used in the two tangential directions.

It is implicitly assumed by the transport calculations that the solution variables are
defined per unit current volume. In LS-DYNA, some variables, such as the internal energy, are
stored in terms of the initial volume of the element. These variables must be rescaled before
transport, then the initial volume of the element is advected between the elements, and then the
variables are rescaled using the new “initial” volumes. Hyperelastic materials are not currently
advected in LS-DYNA because they require the deformation gradient, which is calculated from
the initial geometry of the mesh. If the deformation gradient is integrated by using the midpoint
rule, and it is advected with the other solution variables, then hyperelastic materials can be
advected without any difficulties.

Fn+1:(| _ )Fl’l

y ) U y (17.2.11)
2" 2"

Advection of the Nodal Ve ocities. Except for the Godunov schemes, the velocity is centered at
the nodes or the edges while the remaining variables are centered in the elements. Momentum is
advected instead of the velocity in most codes to guarantee that momentum is conserved. The
element-centered advection algorithms must be modified to advect the node-centered
momentum. Similar difficulties are encountered when node-centered algorithms, such as the
SUPG method [Brooks and Hughes 1982], are applied to element-centered quantities [Liu,
Chang, and Belytschko, to be published]. There are two approaches: 1) construct a new mesh
such that the nodes become the element centroids of the new mesh and apply the element-
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centered advection algorithms, and 2) construct an auxiliary set of element-centered variables
from the momentum, advect them, and then reconstruct the new velocities from the auxiliary
variables. Both approaches can be made to work well, but their efficiency is heavily dependent
on the architecture of the codes. The algorithms are presented in detail for one dimension first
for clarity. Their extensions to three dimensions, which are presented later, are straightforward
even if the equations do become lengthy. A detailed discussion of the algorithms in two
dimensions is presented in Reference [Benson 1992].

Notation. Finite difference notation is used in this section so that the relative locations of the
nodes and fluxes are clear. The algorithms are readily applied, however, to unstructured meshes.
To avoid limiting the discussion to a particular element-centered advection algorithm, the
transport volume through node i is f, the transported mass is F, and the flux of ¢ is ¢ f..
Most of the element-centered flux-limited advection algorithms calculate the flux of ¢ directly,
but the mean value of ¢ in the transport volumes is calculated by dividing the ¢ f., by the

transport volume. A superscript “-” or “+” denotes the value of a variable before or after the
advection. Using this notation, the advection of ¢ in one dimension is represented by Equation

(17.2.12), where the volume is V .

(@ NV +o i —afin)
¢f+y R i - (17.2.12a)

2 \VAs

.
iy Vi i f (17.2.12b)

The Staggered Mesnh Algorithm. YAQUI [Amsden and Hirt 1973] was the first code to
construct a new mesh that is staggered with respect to original mesh for momentum advection.
The new mesh is defined so that the original nodes become the centroids of the new elements.
The element-centered advection algorithms are applied to the new mesh to advect the
momentum. In theory, the momentum can be advected with the transport volumes or the velocity
can be advected with the mass.

. (Mjv; +vj_}/2 fj_% -V, ; fj+%)

v (17.2.13a)
M7
Movi +{pv} . f o —{ov} T )
V= B J+% i 1 (17.2.13b)
M
L
Mp=Mj+1 . =1 (17.2.13¢)

A consistency condition, first defined by DeBar [1974], imposes a constraint on the formulation
of the staggered mesh algorithm: if a body has a uniform velocity and a spatially varying density
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before the advection, then the velocity should be uniform and unchanged after the advection.
The new mass of a node can be expressed in terms of the quantities used to advect the element-
centered mass.

1
Mi==(M", +M’ 2.
=My M) (7214
1,.._ -

21
MT = |V|j +E[(pj_1fj_1 —Pj fj)"'(pj fj _pj+1fj+1)] (17.2.15b)

The staggered mass fluxes and transport volumes are defined by equating Equation (17.2.14) and
Equation (17.2.15).

- 1
Py fi+% - f1+}/2 :g(/’j fi+piafia) (17.2.16)

The density Py, is generally a nonlinear function of the volume fj%, hence calculating fj%

from Equation (17.2.16) requires the solution of a nonlinear equation for each transport volume.
In contrast, the mass flux is explicitly defined by Equation (17.2.16). Most codes, including
KRAKEN [Debar 1974], CSQ [Thompson 1975], CTH [McGlaun 1989], and DYNA2D
[Hallquist 1980], use mass fluxes with the staggered mesh algorithm because of their simplicity.

The dispersion characteristics of this algorithm are identical to the underlying element-
centered algorithm by construction. This is not true, however, for some of the element-centered
momentum advection algorithms. There are some difficulties in implementing the staggered
mesh method in multi-dimensions. First, the number of edges defining a staggered element
equals the number of elements surrounding the corresponding node. On an unstructured mesh,
the arbitrary connectivity results in an arbitrary number of edges for each staggered element.
Most of the higher order accurate advection algorithms assume a logically regular mesh of
quadrilateral elements, making it difficult to use them with the staggered mesh. Vectorization
also becomes difficult because of the random number of edges that each staggered element might
have. In the ALE calculations of DYNA2D, only the nodes that have a locally logically regular
mesh surrounding them can be moved in order to avoid these difficulties [Benson 1992]. These
difficulties do not occur in finite difference codes which process logically regular blocks of
zones. Another criticism is the staggered mesh algorithm tends to smear out shocks because not
all the advected variables are element-centered [Margolin 1989]. This is the primary reason,
according to Margolin [1989], that the element-centered algorithm was adopted in SALE
[Amdsden, Ruppel, and Hirt 1980].

The SALE Algorithm. SALE advects an element-centered momentum and redistributes its
changes to the nodes [Amdsden, Ruppel, and Hirt 1980]. The mean element velocity, iy
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specific momentum, Pisy element momentum, Py and nodal momentum are defined by
Equation (17.2.17).

I
Viy =§(vj + Vi) (17.2.17a)
Pivyy = PiuViey (17.2.17h)
Phy =M vy (17.2.17¢)

Denoting the change in the element momentum APy, the change in the velocity at a node is
calculated by distributing half the momentum change from the two adjacent elements.

APy, = Piafi—pif, (17.2.18a)
1
+ —_— - —_—
P/ =P+ (AP +4P 1)) (17.2.18b)
.
v = i (17.2.18c)
M

This algorithm can also be implemented by advecting the mean velocity, Vi.y with the

transported mass, and the transported momentum p; f; is changed to V; FJ- :

The consistency condition is satisfied regardless of whether masses or volumes are used.
Note that the velocity is not updated from the updated values of the adjacent element momenta.
The reason for this is the original velocities are not recovered if f. = 0, which indicates that

there is an inversion error associated with the algorithm.

The HIS (Half Index Shift) Algorithm. Benson [1992] developed this algorithm based on his
analysis of other element-centered advection algorithms. It is designed to overcome the
dispersion errors of the SALE algorithm and to preserve the monotonicity of the velocity field.
The SALE algorithm is a special case of a general class of algorithms. To sketch the idea behind
the HIS algorithm, the discussion is restricted to the scalar advection equation. Two variables,

W, .y and ¥, ., are defined in terms of a linear transformation of ¢; and ¢,,,. The linear
transformation may be a function of the element j + 1/2.

¥y :[a ngb;}
2_,j+% c d ¢j_+1 (17.2.19)
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This relation is readily inverted.

{¢j+}: 1 [d —b} \PlJ,err%
¢.] ad-bc|-c a 2+,j+% (17.2.20)

A function is monotonic over an interval if its derivative does not change sign. The sum of two
monotonic functions is monotonic, but their difference is not necessarily monotonic. As a

consequence, ‘¥ ;,, and ‘¥, , are monotonic over the same intervals as ¢; if all the

coefficients in the linear transformation have the same sign. On the other hand, ¢,-+ is not
necessarily monotonic even if ¥/, , and \¥;; ., are monotonic because of the appearance of the

negative signs in the inverse matrix. Monotonicity can be maintained by transforming in both
directions provided that the transformation matrix is diagonal. ~Symmetry in the overall

algorithm is obtained by using a weighted average of the values of ¢, calculated in elements
j+ 12 and j-1/2 .

A monotonic element-centered momentum advection algorithm is obtained by choosing
the identity matrix for the transformation and by using mass weighting for the inverse

relationship.
v -
= - 17.2.21
{Tz,n%} 0 1j|Via ( )

To conserve momentum, ¥ is advected with the transport masses.

Wi e = (MW + P £ =W Fra ) M s (17.2.22)

m,j+1/2 mj 'j mj+1 " j+1

1
Vi = —(M jr12V jarye + M j—1/2q'2,j—1/2) (17.2.23)

2M,

Dispersion Errors. A von Neumann analysis [Trefethen 1982] characterizes the dispersion
errors of linear advection algorithms. Since the momentum advection algorithm modifies the
underlying element-centered advection algorithm, the momentum advection algorithm does not
necessarily have the same dispersion characteristics as the underlying algorithm. The von
Neumann analysis provides a tool to explore the changes in the dispersion characteristics without
considering a particular underlying advection algorithm.

The model problem is the linear advection equation with a constant value of c. A class of

solutions can be expressed as complex exponentials, where i is /-1, o is the frequency, and y
is the wave number.
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ap I
—+Cc—=0 2.
(17.2.24a)

o(x,t) = &2 (17.2.24h)

For Equation (17.2.24), the dispersion equation is ® = ¢y, but for discrete approximations
of the equation and for general hyperbolic equations, the relation is ® = wy. The phase velocity,
Cp, and the group speed, cg, are defined by Equation (17.2.25).

p=2 (17.2.25a)
X
dw
Ch=— 2.
0= (17.2.25b)

The mesh spacing is assumed to have a constant value J, and the time step, h, is also constant.
The + and - states in the previous discussions correspond to times n and n+1 in the dispersion

analysis. An explicit linear advection method that has the form given by Equation (17.2.26)
results in a complex dispersion equation, Equation (17.2.27), where IT is a complex polynomial.

¢t =9l +F(c,h 3,001, 0]0]1,) (17.2.26)
e =1+ P(eX) (17.2.27a)
Me?) = Wi gl (17.2.27b)

j

The dispersion equation has the general form given in Equation (17.2.28), where I1, and II,
denote the real and imaginary parts of IT, respectively.

I (17.2.28)
1+11 o

r

wh = tan‘l(

Recognizing that the relations in the above equations are periodic in wh and y”, the normalized
frequency and wave number are defined to simplify the notation.

@=ch 7=y’ (17.2.29)

The von Neumann analysis of the SALE algorithm proceeds by first calculating the increment in
the cell momentum.

17.21



Simplified Arbitrary Lagrangian-Eulerian LS-DYNA Theory Manual

1
" =E(vj“ vl (17.2.30a)
n _l —i7 n 2 b
j+%_§(1+e )V, (17.2.30b)
ntl _ pntl  pn
APy =Py —PLy (17.2.30¢)
n+ 1 —iy n
AP :§(1+e an (17.2.30d)
The velocity is updated from the changes in the cell momentum.
n+1 n 1 n+l n+1
V=V +E(AP].+%+AP]._%) (17.2.31a)
n+1 1 i 7 —iy n
Vi :Z<1+ e?)(1+e) V] (17.2.31b)
n+1 1 = n
V] :§(1+ cos(7))Iv; (17.2.31c)

The dispersion relation for the SALE advection algorithm is given by Equation (17.2.32).

;(1+ cos(7)) 11,
®=tan™" 1 (17.2.32)
1+E(1+ cos(7))11,

By comparing Equation (17.2.28) and Equation (17.2.32), the effect of the SALE momentum
. . . . . 1 _ .
advection algorithm on the dispersion is to introduce a factor A, equal to E(1+ cos(;())l'[, into

the spatial part of the advection stencil. For small values of %, A is close to one, and the
dispersion characteristics are not changed, but when ¥ is x, the phase and group velocity go to

zero and the amplification factor is one independent of the underlying advection algorithm. Not
only is the wave not transported, it is not damped out. The same effect is found in two

dimensions, where A, has the form %(1 +cos(x) +cos(7) +cos(7) cos(;?)) .

In contrast, none of the other algorithms alter the dispersion characteristics of the
underlying algorithm. Benson has demonstrated for the element-centered algorithms that the
SALE inversion error and the dispersion problem are linked. Algorithms that fall into the same
general class as the SALE and HIS algorithms will, therefore, not have dispersion problems
[Benson 1992].
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Three-Dimensional Momentum Advection Algorithms. The momentum advection algorithms
discussed in the previous sections are extended to three dimensions in a straightforward manner.
The staggered mesh algorithm requires the construction of a staggered mesh and the appropriate
transport masses. Based on the consistency arguments, the appropriate transport masses are
given by Equation (17.2.33).

1
fizk :g _ z f (17.2.33)

The SALE advection algorithm calculates the average momentum of the element from the four
velocities at the nodes and distributes 18 of the change in momentum to each node.

1 j+1 k+l 1+1

pj+%,k+}/2,l+% :gpj+%,k+}/2,l+%z z ZVJKL (172348‘)
J=j K=k L=l
1 j+1 k+1 1+1
pj+%,k+}/2,l+% :g M j+}/2,k+%,l+}/zz Z ZVJKL (17234b)
J=j K=k L=l
. 1 ~ B 1 i+% k+¥) 1+%
Vik =3 | MiaVie g D, D AP, (17.2.34c)
ikl J=j-Y% K=k-¥% L=I-Y

The HIS algorithm is also readily extended to three dimensions. The variable definitions are
given in Equation (17.2.35) and Equation (17.2.36), where the subscript A refers to the local
numbering of the nodes in the element. In an unstructured mesh, the relative orientation of the
nodal numbering within the elements may change. The subscript A is always with reference to
the numbering in element j kI . The subscript A is the local node number in an adjacent element

that refers to the same global node number as A.

\PA,j+%,k+%,l+% =V jeykinley (17.2.35)
. 1 j+% k+% 1+% .
Vie=t— 2 2 2 My Wi (17.2.36)

ikl J=j-% K=k-¥ L=I-Y

17.3 The Manual Rezone

The central limitation to the simplified ALE formulation is that the topology of the mesh
is fixed. For a problem involving large deformations, a mesh that works well at early times may
not work at late times regardless of how the mesh is distributed over the material domain. To
circumvent this difficulty, a manual rezoning capability has been implemented in LS-DYNA.
The general procedure is to 1) interrupt the calculation when the mesh is no longer acceptable, 2)
generate a new mesh with INGRID by using the current material boundaries from LS-DYNA (the
topologies of the new and old mesh are unrelated), 3) remap the solution from the old mesh to
the new mesh, and 4) restart the calculation.
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This chapter will concentrate on the remapping algorithm since the mesh generation
capability is documented in the INGRID manual [Stillman and Hallquist 1992]. The remapping
algorithm first constructs an interpolation function on the original mesh by using a least squares
procedure, and then interpolates for the solution values on the new mesh.

The one point quadrature used in LS-DYNA implies a piecewise constant distribution of
the solution variables within the elements. A piecewise constant distribution is not acceptable
for a rezoner since it implies that for even moderately large changes in the locations of the nodes
(say, displacements on the order of fifty percent of the elements characteristic lengths) that there
will be no changes in the values of the element-centered solution variables. A least squares
algorithm is used to generate values for the solution variables at the nodes from the element-
centered values. The values of the solution variables can then be interpolated from the nodal
values, ¢,, using the standard trilinear shape functions anywhere within the mesh.

#(S.11,6)=PNA(S 71, ) (17.3.1)

The objective function for minimization, J, is defined material by material, and each
material is remapped independently.

J =lj(¢ANA—¢)2dv (17.3.2)
2y

The objective function is minimized by setting the derivatives of J with respect to ¢a
equal to zero.

j_J = j(¢BNB —¢)NAdV =0 (17.3.3)
¢A v

The least square values of ¢, are calculated by solving the system of linear equations,
Equation (17.3.4).

M ap#s = [ N x9dV (17.3.4a)
v
M g = | N NgdV (17.3.4b)
Y,

The “mass matrix,” M .5, is lumped to give a diagonal matrix. This eliminates the spurious

oscillations that occur in a least squares fit around the discontinuities in the solution (e.g., shock
waves) and facilitates an explicit solution for ¢,. The integral on the right hand side of Equation
(17.3.4a) is evaluated using one point integration. By introducing these simplifications,
Equation (17.3.4) is reduced to Equation (17.3.5), where the summation over a is restricted to
the elements containing node A.
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S0V,
o= (17.3.5)

o

The value of ¢, is the mean value of ¢ in element a. From this definition, the value of
@, is calculated using Equation (17.3.6).

by = Vi [PaN paV (17.3.6)

o Vy

The integrand in Equation (17.3.6) is defined on the old mesh, so that Equation (17.3.6) is
actually performed on the region of the old mesh that overlaps element o in the new mesh, where
the superscript “*” refers to elements on the old mesh.

1

v 25 * [@aNA0V” (17.3.7)

a VaVp

P =

One point integration is currently used to evaluate Equation (17.3.7), although it would be a
trivial matter to add higher order integration. By introducing this simplification, Equation
(17.3.7) reduces to interpolating the value of ¢, from the least squares fit on the old mesh.

@2 = OANA(S 77 £7) (17.3.8)

The isoparametric coordinates in the old mesh that correspond to the spatial location of
the new element centroid must be calculated for Equation (17.3.8). The algorithm that is
described here is from Shapiro [1990], who references [Thompson and Maffeo 1985, Maffeo
1984, Maffeo 1985] as the motivations for his current strategy, and we follow his notation. The
algorithm uses a “coarse filter” and a “fine filter” to make the search for the correct element in
the old mesh efficient.

The coarse filter calculates the minimum and maximum coordinates of each element in
the old mesh. If the new element centroid, (x,y.,Z ), lies outside of the box defined by the

maximum and minimum values of an old element, then the old element does not contain the new
element centroid.

Several elements may pass the coarse filter but only one of them contains the new
centroid. The fine filter is used to determine if an element actually contains the new centroid.
The fine filter algorithm will be explained in detail for the two-dimensional case since it easier to
visualize than the three-dimensional case, but the final equations will be given for the three-
dimensional case.

The two edges adjacent to each node in Figure 17.2 (taken from [Shapiro 1990]) define
four skew coordinate systems. If the coordinates for the new centroid are positive for each
coordinate system, then the new centroid is located within the old element. Because of the
overlap of the four positive quarter spaces defined by the skew coordinate systems, only two
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coordinate systems actually have to be checked. Using the first and third coordinate systems, the
coordinates, &, are the solution of Equation (17.3.9).

V.=V, +aV, +aV, (17.3.9a)
V.=V, +a,V,, + a,V,, (17.3.9b)

Two sets of linear equations are generated for the o by expanding the vector equations.

X, =% X —X% || Xs — %
= 17.3.10a
{Y2 —Y1 Ya-— W_{%} {ys - Y1} ( )
= 17.3.10b
{YZ—% Y4_y3_{0‘4} {ys_y3} ( )
y
A
4
3
(X1 ¥g)
1 a Vv O‘3\,32
OL1V12 4" 34
\2 o Vg
2
Vs
p X

Figure 17.2. Skew Coordinate System
The generalization of Equation (17.3.9) to three dimensions is given by Equation
(17.3.11), and it requires the solution of four sets of three equations. The numbering convention
for the nodes in Equation (17.3.11) follows the standard numbering scheme used in LS-DYNA
for eight node solid elements.
Ve =Vt aV, +aV, +aV, (17.3.11a)

V.=V, + @V, +aV,, +aV, (17.3.11b)
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Ve = Vo + @V, + 8V + 8V (17.3.11c)
Ve = Ve + aVs + &V, + a,Vy (17.3.11d)

The fine filter sometimes fails to locate the correct element when the mesh is distorted.
When this occurs, the element that is closest to the new centroid is located by finding the element
for which the sum of the distances between the new centroid and the nodes of the element is a
minimum.

Once the correct element is found, the isoparametric coordinates are calculated using the
Newton-Raphson method, which usually converges in three or four iterations.

—XAO_NA XAoNA XAd\lA_
%3 an A NAE) (%= XaN,
N, N 5 N ,
Ya E Ya on Ya o A1 =1Ys=YaNa (17.3.12)
. N, 7 N, . N , AL Z;—zpNp
i AT JE A on A i |
é:i+1:é:i +Aé:
nt=n+An (17.3.13)
§i+1:§i +A§
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18. STRESSUPDATE OVERVIEW

18.1 Jaumann Stress Rate
Stresses for material which exhibit elastic-plastic and soil-like behavior (hypoelastic) are
integrated incrementally in time:

oy (t+dt) = o3, (t) + 6t (18.1)

Here, and in equations which follow, we neglect the contribution of the bulk viscosity to the
stress tensor. In Equation (17.1), the dot denotes the material time derivative given by

o"ij = O'ijV + O Wy + O Wy (18.2)
in which
@, = %{%_Z_‘Q] (18.3)
J
is the spin tensor and
O'ijV = Cjuéu (18.4)

is the Jaumann (co-rotational) stress rate. In Equation 18.4, C,, is the stress dependent
constitutive matrix, v, , is the velocity vector, and & is the strain rate tensor:

1 dv, 9V,
= 1 18.5
“ 2£o”xj é’)g] (18.5)

In the implementation of Equation (18.1) we first perform the stress rotation, Equation
(18.2), and then call a constitutive subroutine to add the incremental stress components O'ijv.
This may be written as

O'iT+1 =0y +r' + O'ijvm%At "% (18.6)

where

18.7
Giij-%Atm-% — Cj|<| AEQJr% ( )

AEM = MV AL
ij ij
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n+1

and rij” gives the rotation of the stress at time t" to the configuration at t

n_ n n+% n n+% n+%
I —(O'ipa)pj + 0 @y At

(18.8)

In the implicit NIKE2D/3D [Hallquist 1981b] codes, which are used for low frequency
structural response, we do a half-step rotation, apply the constitutive law, and complete the
second half-step rotation on the modified stress. This approach has also been adopted for some
element formulations in LS-DYNA when the invariant stress update is active. An exact or
second order accurate rotation is performed rather than the approximate one represented by
Equation (18.3), which is valid only for small incremental rotations. A typical implicit time step
is usually 100 to 1000 or more times larger than the explicit time step; consequently, the direct
use of Equation (18.7) could lead to very significant errors.

18.2 Jaumann Stress Rate Used With Equations of State

If pressure is defined by an equation of state as a function of relative volume, V, and
energy, E, or temperature, T,

p=pV,E)=pV,T) (18.9)

we update the deviatoric stress components

§ = ol +1] + p"S; + c.jk,g-&,’”%m”*% (18.10)

%

LN+ - . . -
where &;; is the deviatoric strain rate tensor:

]

iy .1
E n+% :gij —ggkk5 (1811)

Before the equation of state, Equation (18.9), is evaluated, we compute the bulk viscosity,
g, and update the total internal energy e of the element being processed to a trial value e*:

e =¢" - % AV( o+ + q”%) "o Toag 2 (18.12)
where v is the element volume and
AV =™yt o 1(V” +v™)
’ 2

S

(18.13)
= %(si? +5")

The time-centering of the viscosity is explained by Noh [1976].
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Assume we have an equation of state that is linear in internal energy of the form

pn+1 — An+1 + Bn+1En+1 (18.14)

where

1
en+

EM==_ 18.15
v ( )

and v, is the initial volume of the element. Noting that
en+1 — e*n+1 _lAvpml (18.16)

pressure can be evaluated exactly by solving the implicit form

. (An+1 + Bn+1E*n+1)

p =
1+1 B”“&
2 v,

(18.17)

and the internal energy can be updated in Equation (18.16). If the equation of state is not linear
in internal energy, a one-step iteration is used to approximate the pressure

p*n+1 — p(V n+1’ E*n+1) (18.18)

Internal energy is updated to n+1 using p "

computed:

in Equation (18.16) and the final pressure is then

pn+1 — p(\/ n+1, En+1) (18.19)

This is also the iteration procedure used in KOVEC [Woodruff 1973]. All the equations of state
in LS-DYNA are linear in energy except the ratio of polynomials.

18.3 Green-Naghdi Stress Rate
The Green-Naghdi rate is defined as

0 =03 +0y 824 +0 2 =R«R; 7, (18.20)
where €2, is defined as

Q; = RikRk (18.21)

and R is found by application of the polar decomposition theorem
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Fij = Ry =VikRy (18.22)

F; is the deformation gradient matrix and U;; and V; are the positive definite right and left

ij
stretch tensors:

i

Stresses are updated for all materials by adding to the rotated Cauchy stress at time n.
7 =R¢ Rjoy (18.24)

the stress increment obtained by an evaluation of the constitutive equations,

Ari'j”% =Ciju Ad:|+% (18.25)
where
Adij”% R Rer% el 2 (18.26)
Cju = constitutive matrix
Agy = increment in strain

and to obtain the rotated Cauchy stress atn+1, i.e.,

n+1

Ty = TiT+ATiT+% (18.27)
The desired Cauchy stress at n+1 can now be found
O_irj]+1: er](ﬂ RJ[]I+1TEI+1 (18.28)

Because we evaluate our constitutive models in the rotated configuration, we avoid the need to
transform history variables such as the back stress that arises in kinematic hardening.

In the computation of R, Taylor and Flanagan [1989] did an incremental update in
contrast with the direct polar decomposition used in the NIKE3D code. Following their notation
the algorithm is given by.

Z = GV iménk

1
0; = €)Wy —ZM —é‘iijk] Z;
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1
Q; = Eijwk

(é‘ik _%Qik) nj+1 = (é‘ik +%Qik)Rl?j (18.29)
vij = (& + @ )Vyg —Vie€2y
Vijn+1 :Vijn + Atvij

We have adopted the PRONTO3D approach in LS-DYNA due to numerical difficulties with the
polar decomposition in NIKE3D. We believe the PRONTO3D approach is reliable. Several
disadvantages of the PRONTO3D approach include 300+ operations (at least that is the number
we got), the requirement of 15 additional variables per integration point, and if we rezone the
material in the future the initial geometry will need to be remapped and the 15 variables
initialized.

18.4 Elastoplastic Materials

At low stress levels in elastoplastic materials the stresses, o,
of strain; however, above a certain stress level, called the yield stress, o, (&), nonrecoverable
plastic deformations are obtained. The yield stress changes with increasing plastic deformations,

which are measured by internal variables, a..

In the uniaxial tension test, a curve like that in Figure 18.1 is generated where logrithmic
uniaxial strain is plotted against the uniaxial true stress which is defined as the applied load P
divided by the actual cross-sectional area, A.

For the simple von Mises plasticity models the yield stress is pressure independent and
the yield surface is a cylinder in principal stress space as shown in Figure 18.2. With isotropic
hardening the diameter of the cylinder grows but the shape remains circular. In kinematic
hardening the diameter may remain constant but will translate in the plane as a function of the
plastic strain tensor, See Figure 18.3.

The equation describing the pressure independent yield surface, F, is a function of the

deviatoric stress tensor, S;, of a form given in Equation (18.30).

depends only on the state

Flsja)=tls)-o,@)=0 (18.30)
f(sj) = determines the shape,
oy(a) = determines the translation and size.

The existence of a potential function, g, called the plastic potential, is assumed

g=09(s)) (18.31)
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CA
P
A
Initial uniaxial G, = 0y(a)
yield point ©y0 [~ — experimental curve ﬁ —
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— —— plastic strain
elastic p
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0

Figure 18.1. The uniaxial tension test demonstrates plastic behavior.

03‘

yield surfag
defined by

deviatoric plane

yield curve = intersection of the deviatoric
plane with the yield surface

Figure 18.2. The yield surface in principal stress space in pressure independent.
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initial yield
curve in the
deviatoric
plane

current
yield
surface

Figure 18.3. With kinematic hardening the yield surface may shift as a function of plastic strain.

Stability and uniqueness require that:

del = /’t% (18.32)
)

where A is a proportionality constant.
As depicted in Figure 18.4 the plastic strain increments deif’ are normal to the plastic

potential function. This is the normality rule of plasticity.
The plastic potential g is identical with the yield condition F(s;)

g=F (18.33)
Hence:
bz
deP =18 & deP =42~ agrad (18.34)
: 3511' J &qu
X

and the stress increments ds; are normal to the plastic flow —.
i
Post -yielding behavior from uniaxial tension tests typically show the following behaviors
illustrated in Figure 18.5:
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03

Figure 18.4. The plastic strain is normal to the yield surface.

s “ s |
o4 hardening 54 ideal 4 softening
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Figure 18.5. Hardening, ideal, and softening plasticity models.

The behavior of these hardening laws are characterized in Table 18.1. below. Although
LS-DYNA permits softening to be defined and used, such softening behavior will result in strain
localization and nonconvergence with mesh refinement.

18.5 Hyperelastic Materials

Stresses for elastic and hyperelastic materials are path independent; consequently, the
stress update is not computed incrementally. The methods described here are well known and
the reader is referred to Green and Adkins [1970] and Ogden [1984] for more details.

A retangular cartesian coordinate system is used so that the covariant and contravariant
metric tensors in the reference (undeformed) and deformed configuration are:
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g = g’ = J;

G. = X X
ij =X X (18.35)
ij_ X Kj

Gl =

The Green-St. Venant strain tensor and the principal strain invariants are defined as

7 =46, -4)
Il = 5”6”
(18.36)
I, =1(5"67G,Gy - 6"5°G,G,)
HARDENING IDEAL SOFTENING
BEHAVIOR Gy(aj) is monotonic Gy(a;) is constant Gy(aj) is monotonic
increasing decreasing
STABILITY yes yes No
UNI yes No
QUENESS yes
metals, dense sand,
APPLICATIONS concrete, rock with crude idealization concrete with
small deformations ~ for steel, plastics, large deformations
etc.

Table 18.1. Plastic hardening, ideal plasticity, and softening.

For a compressible elastic material the existence of a strain energy functional, W, is
assumed

W=W(I,1,,1y) (18.37)

which defines the energy per unit undeformed volume. The stress measured in the deformed
configuration is given as [Green and Adkins, 1970]:

s’ =g’ +¥BY + pGY (18.38)
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where
W
d=-2"""
EN N
(18.39a)
oW
w__2 7"
V13 4,
oW
=2.1. 2%
p 3 A,
(18.39b)
BI = 1,67 -6"5G,,
This stress is related to the second Piola-Kirchhoff stress tensor:
SUEINA (18.40)

Second Piola-Kirchhoff stresses are transformed to physical (Cauchy) stresses according to the
relationship:

o, =21 "L, (18.41)

18.6 Layered Composites

The composite models for shell elements in LS-DYNA include models for elastic
behavior and inelastic behavior. The approach used here for updating the stresses also applies to
the airbag fabric model.

To allow for an arbitrary orientation of the shell elements within the finite element mesh,
each ply in the composite has a unique orientation angle, £, which measures the offset from

some reference in the element. Each integration point through the shell thickness, typically
though not limited to one point per ply, requires the definition of £ at that point. The reference

is determined by the angle ¥, which can be defined for each element on the element card, and is
measured from the 1-2 element side. Figures 18.6 and 18.7 depict these angles.

We update the stresses in the shell in the local shell coordinate system which is defined
by the 1-2 element side and the cross product of the diagonals. Thus to transform the stress
tensor into local system determined by the fiber directions entails a transformation that takes
place in the plane of the shell.

In the implementation of the material model we first transform the Cauchy stress and
velocity strain tensor d; into the coordinate system of the material denoted by the subscript L
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G, =qoq
q. =g'dg (18.42)

G171 612013 dy; dipdig
O =| 0,1 003 |£ =| Uy dypdys
d., d.,d

G3 63,033 32 UzpUss

The Arabic subscripts on the stress and strain (o and ¢) are used to indicate the principal
material directions where 1 indicates the fiber direction and 2 indicates the transverse fiber
direction (in the plane). The orthogonal 3x3 transformation matrix is given by

cos® -sin6 0
g=|sin® cos6 O (18.43)
0 0 1

In shell theory we assume a plane stress condition, i.e., that the normal stress, o, to the mid-
surface is zero. We can now incrementally update the stress state in the material coordinates

n

Figure18.6. Orientation of material directions relative to the 1-2 side.
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0 =y+B

e
s
_——
-
o

il h...x

Figure18.7. A multi-layer laminate can be defined. The angle (; is defined for the ith lamina.

o = o + o] (18.44)
where for an elastic material
_Ao-ll 7 Qll Q12 O O 0 W _dll ]
AO—ZZ Q12 Q22 O O 0 d22
Aol =|Ac,|=| 0 0 Q, 0 0 |[d,]|At (18.45)
AO_ZS 0 0 0 Q55 0 d23
A0u] | 0 0 0 0 @ QullGal

The terms Q; are referred to as reduced components of the lamina and are defined as

Q-5
— ViV
E
Qe = -
1- VioVor
le — n Vi E11
— ViV
Qu =G, (18.46)
Q55 = st
Qee = G3l

Because of the symmetry properties,
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E.
V. =

=y, —L (18.47)
"

where v; is Poisson’s ratio for the transverse strain in jth direction for the material undergoing
stress in the ith-direction, E; are the Young’s modulii in the ith direction, and G; are the shear

modulii.
After completion of the stress update we transform the stresses back into the local shell
coordinate system.

o=qo.q (18.48)

18.7 Constraintson Orthotropic Elastic Constants
The inverse of the constitutive matrix C is generally defined in terms of the local

material axes for an orthotropic material is given in terms of the nine independent elastic
constants as

1 U Ugn 0 0 0 ]
= E, Ess
U 1 Uz 0 0 0
En  Ex Ess
R L (18.49)
cl=| Eu By Es
0 0 0 1 0 0
Gy,
1
0 0 0 o — 0
Gy3
0 0 0 0 0 i
L 31 ]

As discussed by Jones [1975], the constants for a thermodynamically stable material must satisfy
the following inequalities:

E.E.E G, G; G, >0 (18.50a)

C, Cy,Cyy,CY, Gy, G > 0 (18.50b)

(L= Vavap ML= Vigvas )L =151 ) > 0 (18.50c)
1=V15Vo1 = VosVar = VarVis = 2V VapVia > 0 (18.50d)
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Using Equation (18.47) and (18.50b) leads to:

b
E E
V| < —Ei vig| < _EZ (18.51)
b b
E33 E22
Voo | <| ——— Vool <| ——=
| 32| Ez | 23| Ess
b %
E E
|V13|< _Ez |V31|< _E::

18.8 Local Material Coordinate Systemsin Solid Elements

In solid elements there is a number of different ways of defining a local coordinate
system. Perhaps the most general is by defining a triad for each element that is oriented in the
local material directions, See Figure 18.8. In this approach two vectors a and d are defined.
The local c direction is found from the cross product, c =axd, the local b direction is the cross
product b= cxa. This triad is stored as history data at each integration point.

,/

b\
Figure 18.8. Local material directions are defined by a triad which can be input for each solid
element.

The biggest concern when dealing with local material directions is that the results are not
invariant with element numbering since the orientation of the local triad is fixed with respect to
the base of the brick element, nodes 1-4, in Figure 18.9. For Hyperelastic materials where the
stress tensor is computed in the initial configuration, this is not a problem, but for materials like
the honeycomb foams, the local directions can change due to element distortion causing relative
movement of nodes 1-4. In honeycomb foams we assume that the material directions are
orthogonal in the deformed configuration since the stress update is performed in the deformed
configuration.
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Figure18.9. The orientation of the triad for the local material directions is stored relative to
the base of the solid element. The base is defined by nodes 1-4 of the element

connectivity.

18.9 General Erosion Criteriafor Solid Elements

Several erosion criteria are available that are independent of the material models. Each
one is applied independently, and once any one of them is satisfied, the element is deleted from

the calculation. The criteria for failure are:

1.

P>P is the

min
pressure at failure.
0,20, , Where o, is the maximum principal stress, and o, .is the principal

stress at failure.
\30,0, 25, , where o, are the deviatoric stress components, and G,,, is

where P is the pressure (positive in compression), and P,

n

the equivalent stress at failure.

& 2 &, Where g is the maximum principal strain, and &
strain at failure.

V1 = ¥ o Where y, is the shear strain, and y,... is the shear strain at failure.

is the principal

max

The Tuler-Butcher criterion,

[ Imax(0, 0y — 09)1%dt > K (18.52)

where o, is the maximum principal stress, o, is a specified threshold stress,
0,20,20, and K, is the stress impulse for failure. Stress values below the

threshold value are too low to cause fracture even for very long duration loadings.

Typical constants are given in Table 18.2 below [Rajendran, 1989].

18.15
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These failure models apply to solid elements with one point integration in 2 and 3 dimensions.

Material 0, (Kbar) A Ky
1020 Steel 10.0 2 12.5
OFHC Copper 3.60 2 10.0
C1008 14.0 2 0.38

HY 100 15.7 2 61.0
7039-T64 8.60 2 3.00

Table 18.2. Typical constants for the Tuler-Bucher criterion.

18.10 Strain Output tothe LS-DYNA Database

The strain tensors that are output to the LS-DYNA database from the solid, shell, and
beam elements are integrated in time. These strains are similar to the logarithmic strain measure
and are based on an integration of the strain rate tensor. Admittedly, the shear strain components
do not integrate as logarithmic strain measures, but in spite of this, we have found that the strains
output from LS-DYNA are far more useful than those computed in LS-DYNA. The time
integration of the strain tensor in LS-DYNA maintains objectivity in the sense that rigid body
motions do not cause spurious straining.

Recall, the spin tensor and strain rate tensor, Equations (18.3) and (18.5), respectively:

_Ym
T2 o (185)

In updating the strains from time n to n+1, the following formula is used:

M =gl 4 pl + &l ™ (18.53)
where Pi? gives the rotational correction that transforms the strain tensor at time t" into the

n+1

configuration at t

P = (8-” a);r% rel ot )At "%

'p Ipp (18.54)

For shell elements we integrate the strain tensor at the inner and outer integration points
and output two tensors per element. When the mid surface strains are plotted in LS-PREPOST,
these are the average values.
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19. MATERIAL MODELS

LS-DYNA accepts a wide range of material and equation of state models, each with a
unique number of history variables. Approximately 150 material models are implemented, and
space has been allotted for up to 10 user-specified models.

O©oo~NoolThwN -

Elastic

Orthotropic Elastic

Kinematic/lIsotropic Elastic-Plastic
Thermo-Elastic-Plastic

Soil and Crushable/Non-crushable Foam
Viscoelastic

Blatz - Ko Rubber

High Explosive Burn

Null Hydrodynamics
Isotropic-Elastic-Plastic-Hydrodynamic
Temperature Dependent, Elastoplastic, Hydrodynamic
Isotropic-Elastic-Plastic

Elastic-Plastic with Failure Model

Soil and Crushable Foam with Failure Model
Johnson/Cook Strain and Temperature Sensitive Plasticity
Pseudo TENSOR Concrete/Geological Model
Isotropic Elastic-Plastic Oriented Crack Model
Power Law lIsotropic Plasticity

Strain Rate Dependent Isotropic Plasticity

Rigid

Thermal Orthotropic Elastic

Composite Damage Model

Thermal Orthotropic Elastic with 12 Curves
Piecewise Linear Isotropic Plasticity

Inviscid Two Invariant Geologic Cap Model
Metallic Honeycomb

Compressible Mooney-Rivlin Rubber

Resultant Plasticity

Force Limited Resultant Formulation
Closed-Form Update Shell Plasticity

Slightly Compressible Rubber Model

Laminated Glass Model

Barlat’s Anisotropic Plasticity Model

Fabric

Kinematic/lIsotropic Elastic-Plastic Green-Naghdi Rate
Barlat’s 3-Parameter Plasticity Model
Transversely Anisotropic Elastic-Plastic

Blatz-Ko Compressible Foam

Transversely Anisotropic Elastic-Plastic with FLD
Nonlinear Elastic Orthotropic Material
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41-50
42
48
51
52
53

54-55
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

84-85
84
86
87
88
89
90
91
93
94
95
96

User Defined Material Models

Planar Anisotropic Plasticity Model

Strain Rate Dependent Plasticity with Size Dependent Failure
Temperature and Rate Dependent Plasticity
Sandia’s Damage Model

Low Density Closed Cell Polyurethane Foam
Composite Damage Model

Low Density Urethane Foam

Laminated Composite Fabric

Composite Failure

Elastic with Viscosity

Maxwell/Kelvin Viscoelastic

Viscous Foam

Isotropic Crushable Foam

Strain Rate Sensitive Power-Law Plasticity
Modified Zerilli/Armstrong

Linear Stiffness/Linear Viscous 3D Discrete Beam
Nonlinear Stiffness/Viscous 3D Discrete Beam
Nonlinear Plastic/Linear Viscous 3D Discrete Beam
Side Impact Dummy Damper, SID Damper
Hydraulic/Gas Damper

Cable

Concrete Damage Model

Low Density Viscoelastic Foam

Elastic Spring for the Discrete Beam
Bilkhu/Dubois Foam Model

General Viscoelastic

Hyperviscoelastic Rubber

Soil/Concrete

Hysteretic Soil

Ramberg-Osgood Plasticity

Plastic with Damage

Isotropic Elastic-Plastic with Anisotropic Damage
Fu-Chang’s Foam with Rate Effects

Winfrith Concrete

Winfrith Concrete Reinforcement
Orthotropic-Viscoelastic

Cellular Rubber

MTS Model

Plasticity Polymer

Acoustic

Soft Tissue

Elastic 6DOF Spring Discrete Beam

Inelastic Spring Discrete Beam

Inelastic 6DOF Spring Discrete Beam

Brittle Damage Model
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Material Models

97
100
101
102
103
104
105
106
110
111
112
113
114
115
116

117-118
119
120
120
121
122
123
124
126
127
128
129
130
131
132
133
134
139
140
141
142
143
144
145
146
147
148
150
151
154
156

General Joint Discrete Beam

Spot weld

GE Thermoplastics

Hyperbolic Sin

Anisotropic Viscoplastic

Damage 1

Damage 2

Elastic Viscoplastic Thermal
Johnson-Holmquist Ceramic Model
Johnson-Holmquist Concrete Model
Finite Elastic Strain Plasticity
Transformation Induced Plasticity
Layered Linear Plasticity

Elastic Creep Model

Composite Lay-Up Model
Composite Matrix

General Spring and Damper Model
Gurson Dilational-Plastic Model
Gurson Model with Rc-Dc

Generalized Nonlinear 1DOF Discrete Beam

Hill 3RC

Modified Piecewise Linear Plasticity
Tension-Compression Plasticity
Metallic Honeycomb
Arruda-Boyce rubber
Anisotropic heart tissue

Lung tissue

Special Orthotropic

Isotropic Smeared Crack
Orthotropic Smeared Crack
Barlat YLD2000

Viscoelastic Fabric

Modified Force Limited
Vacuum

Rate Sensitive Polymer
Transversely Anisotropic Crushable Foam
Wood Model

Pitzer Crushable Foam

Schwer Murray Cap Model
1DOF Generalized Spring
FHWA Soil Model

Gas Mixture

CFD

EMMI

Deshpande-Fleck Foam

Muscle
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158
159
161-162
163
164
166
169
170
175
176
177
178
179
181
183
184
185
191
192
193
194
195
196
197
198

Rate Sensitive Composite Fabric
Continuous Surface Cap Model
Composite MSC

Modified Crushable Foam
Brain Linear Viscoelastic
Moment Curvature Beam

Arup Adhesive

Resultant Anisotropic
Viscoelastic Maxwell
Quasilinear Viscoelastic

Hill Foam

Viscoelastic Hill Foam

Low Density Synthetic Foam
Simplified Rubber/Foam
Simplified Rubber with Damage
Cohesive Elastic

Cohesive TH

Seismic Beam

Soil Brick

Drucker Prager

RC Shear Wall

Concrete Beam

General Spring Discrete Beam
Seismic Isolator

Jointed Rock
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Material Models

In the table below, a list of the available material models and the applicable element types are
Some materials include strain rate sensitivity, failure, equations of state, and thermal
effects and this is also noted. General applicability of the materials to certain kinds of behavior
is suggested in the last column.

given.

Notes:
Gn General
Cm Composites
Cr  Ceramics
n ° Fl Fluids
) B ® w|/Fm Foam
o) Y—
£ 0 ) E Gl Glass
> i) % 2 S {G|Hy Hydro-dyn
T S <
B & ol , & ®/Mt Metal
o SETHS5E E(PI  Plastic
3 ':8EE&%%ER[} Rubber
= | Material Title Mo @ W W g seil/Conc
1| Elastic YYYVYY Gn, FI
2 | Orthotropic Elastic (Anisotropic - solids) Y Y Y Cm, Mt
3 | Plastic Kinematic/lsotropic Y Y Y Y|YY Cm, Mt, PI
4 | Elastic Plastic Thermal YYYY Y | Mt, PI
5| Soil and Foam Y Fm, SI
6 | Linear Viscoelastic Y YY Y Rb
7 | Blatz-Ko Rubber Y Y Rb, Polyurethane
8 | High Explosive Burn Y Y Hy
9 [ Null Material Y Y Y Y |Fl, Hy
10 | Elastic Plastic Hydro(dynamic) Y Y Y Hy, Mt
11 | Steinberg: Temp. Dependent Elastoplastic Y Y Y Y Y |Hy Mt
12 | Isotropic Elastic Plastic Y Y'Y Mt
13 | Isotropic Elastic Plastic with Failure Y Y Mt
14 | Soil and Foam with Failure Y Y Fm, Sl
15 | Johnson/Cook Plasticity Model Y Y Y Y Y Y|Hy Mt
16 | Pseudo TENSOR Geological Model Y Y Y'Y Sl
17 | Oriented Crack (Elastoplastic with Fracture) Y Y Y Hy, Mt, PI
18 | Power Law Plasticity (Isotropic) Y Y'Y Y|Y Mt, PI
19 | Strain Rate Dependent Plasticity Y Y Y|Y Y Mt, PI
20 | Rigid Y YYY
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Notes:
Gn General
Cm Composites
Cr Ceramics
% © FI Fluids
g :8 ® w|[Fm Foam
£ 0 ) E Gl Glass
> w % % S {o|Hy Hydro-dyn
= gﬁquaMtMetal
T 287 %<5 5% EP Plastic
3 ;8333%3ERbRubber
= | Material Title M@ @ W W g seil/Conc
21 | Orthotropic Thermal (Elastic) Y Y Y Y | Gn
22 | Composite Damage Y Y Y Y Cm
23 | Temperature Dependent Orthotropic Y Y Y Y |Cm
24 | Piecewise Linear Plasticity (Isotropic) Y Y Y Y|[YY Mt, PI
25 | Inviscid Two Invariant Geologic Cap Y Sl
26 | Honeycomb Y Y Y Cm, Fm, SI
27 | Mooney-Rivlin Rubber Y Y Rb
28 | Resultant Plasticity Y Y Mt
29 | Force Limited Resultant Formulation Y
30 | Closed Form Update Shell Plasticity Y Y Mt
31 | Slightly Compressible Rubber Y Rb
32 | Laminated Glass (Composite) Y Y Y Cm, Gl
33 | Barlat Anisotropic Plasticity Y Y Y Cr, Mt
34 | Fabric Y
35 | Plastic Green-Naghdi Rate Y Y Mt
36 | 3-Parameter Barlat Plasticity Y Mt
37 | Transversely Anisotropic Elastic Plastic Y Y Mt
38 | Blatz-Ko Foam Y Y Fm, PI
39 | FLD Transversely Anisotropic Y Y Mt
40 | Nonlinear Orthotropic Y Y Y |Cm
41-50 | User Defined Materials Y YY Y|Y Y Y Y|Gn
42 | Planar Anisotropic Plasticity Model
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Notes:
Gn General
Cm Composites
Cr  Ceramics
% © FI  Fluids
3 :8 % w|Fm Foam
£ I @ B|GlI Glass
= w = & % {§|Hy Hydro-dyn
B gﬁqw.éﬁl\m Metal
o S ET ¥ £ 58 EPI Plastic
© = T o E Rb  Rubber
= | Material Title Mo H @ WL Wg  seilConc
51 | Bamman (Temp/Rate Dependent Plasticity) Y Y|Y Y |Gn
52 | Bamman Damage Y Y Y|[Y Y Y | Mt
53 | Closed Cell Foam (Low Density Polyurethane) |Y Fm
54 | Composite Damage with Change Failure Y Y Cm
55 | Composite Damage with Tsai-Wu Failure Y Y Cm
56
57 | Low Density Urethane Foam Y Y Y Fm
58 | Laminated Composite Fabric Y
59 | Composite Failure (Plasticity Based) Y Y Y Cm, Cr
60 | Elastic with Viscosity (Viscous Glass) Y Y Y Y |Gl
61 | Kelvin-Maxwell Viscoelastic Y Y Fm
62 | Viscous Foam (Crash Dummy Foam) Y Y Fm
63 | Isotropic Crushable Foam Y Y Fm
64 | Rate Sensitive Powerlaw Plasticity Y Y Y|Y Mt
65 | Zerilli-Armstrong (Rate/Temp Plasticity) Y Y Y Y Y |Mt
66 | Linear Elastic Discrete Beam Y Y
67 | Nonlinear Elastic Discrete Beam Y Y
68 | Nonlinear Plastic Discrete Beam Y Y'Y
69 | SID Damper Discrete Beam Y Y
70 | Hydraulic Gas Damper Discrete Beam Y Y
71 | Cable Discrete Beam (Elastic) Y
72 | Concrete Damage Y Y Y'Y Sl
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Notes:
Gn  General
Cm Composites
Cr  Ceramics
%) ° FI  Fluids
g E % o|Fm Foam
= I @ B|Gl Glas
> 0 =2 g 5 {G|Hy Hydro-dyn
=z gﬁqmgaMt Metal
T 222 xl<s s % E|PlI  Plastic
© =2 8 = = ®© B o E Rb  Rubber
= | Material Title M@ - @ WL Wig  sil/Conc
73 | Low Density Viscous Foam Y Y Y Fm
74 | Elastic Spring for the Discrete Beam
75 | Bilkhu/Dubois Foam (lIsotropic) Y Y Fm
76 | General Viscoelastic (Maxwell Model) Y Y Rb
77 | Hyperelastic and Ogden Rubber Y Rb
78 | Soil Concrete Y Y Sl
79 | Hysteretic Soil (Elasto-Perfectly Plastic) Y Y Sl
80 | Ramberg Osgood Plasticity
81 | Plasticity with Damage (Elasto-Plastic) Y Y Y Y|YY Mt, PI
82 | Isotropic Elastic-Plastic with Anisotropic Damage
83 | Fu Chang Foam Y Y Y Fm
84 | Winfrith Concrete Reinforcement Y
85
86 | Orthotropic Viscoelastic Y Y Rb
87 | Cellular Rubber Y Y Rb
88 | MTS Y Y Y Y Mt
89 | Plasticity Polymer Y
90 | Acoustic Y Fl
91 | Soft Tissue Y Y
93 | Elastic 6DOF Spring Discrete Beam Y
94 | Inelastic Spring Discrete Beam Y
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Material Models

Notes:
Gn  General
Cm Composites
Cr  Ceramics
% © FI  Fluids

g E % wu|Fm Foam

= L@ B B|Gl  Glass

> © 3 S S fg|Hy Hydro-dyn

= %ﬁnl:mgaMt Metal

o £ 2% xls s & EIPI Plastic

® -8%339%32% Rubber

= | Material Title Mok H|® W W g Seil/Conc

95 | Inelastic 6DOF Spring Discrete Beam Y

96 | Brittle Damage Y Y'Y

97 | General Joint Discrete Beam Y

98 | Simplified Johnson Cook Y YYY

99 | Simplified Johnson Cook Orthotropic Damage

100 | Spotweld Y

101 | GEPLASTIC Strate2000a Y

102 | Inv Hyperbolic Sin Y

103 | Anisotropic Viscoplastic Y Y

104 | Damage 1 Y Y

105 | Damage 2 Y Y

106 | Elastic Viscoplastic Thermal Y Y Y

107

108

109

110 | Johnson Holmguist Ceramics Y

111 | Johnson Holmgquist Concrete Y

112 | Finite Elastic Strain Plasticity Y

113 | TRIP Y Y Y | Mt

114 | Layered Linear Plasticity Y 'Y

115 | Unified Creep Y
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Notes:
Gn Generd
Cm Composites
Cr  Ceramics
% © FI  Fuids
& B ® o|Fm Foam
Q =
= O B B|Gl Glas
> © 3 S S fg|Hy Hydro-dyn
® g 6% o 5 3M Metd
o §wC%.EsaEPI Plastic
= -8%339%32% Rubber
= | Materid Title @@k & W UWkHlg  sl/Conc
116 | Composite Layup Y
117 | Composite Matrix Y
118 | Composite Direct Y
119 | Genera Nonlinear 6DOF Discrete Beam Y Y Y
120 | Gurson Y Y
121 | Generdized Nonlinear 1DOF Discrete Beam Y
122 | Hill 3RC
123 | Modified Piecewise Linear Plasticity Y Y
124 | Plagticity Compression Tension Y
126 | Modified Honeycomb Y
127 | Arruda Boyce Rubber Y
128 | Heart Tissue Y
129 | Lung Tissue Y
130 | Special Orthotropic Y
131 | Isotropic Smeared Crack Y Y Mt, Cm
132 | Orthotropic Smeared Crack Mt, Cm
133 | Barlat YLD2000
139 | Modified Force Limited Y
140 | Vacuum
141 | Rate Sensitive Polymer
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Material Models

Notes:
Gn  General
Cm Composites
Cr  Ceramics
%) ° FI  Fluids
g E % o|Fm Foam
= I @ B|Gl Glas
> 0 =2 g 5 {G|Hy Hydro-dyn
= gﬁqwgaMt Metal
T 222 x%<s s % E|PlI  Plastic
® 2§z =2 2% 2 ZRb Rubber
= | Material Title @@k F® WL Wkls  Soil/Conc
142 | Transversely Anisotropic Crushable Foam
143 | Wood
144 | Pitzer Crushable Foam
145 | Schwer Murray Cap Model
146 | 1DOF Generalized Spring
147 | FHWA Soil
147 | FHWA Soil Nebraska
148 | Gas Mixture
150 | CFD
151 | EMMI Y Y|Y Y Y | Mt
154 | Deshpande Fleck Foam
156 | Muscle Y Y
158 | Rate Sensitive Composite Fabric Y Y|[Y Y Cm
159 | CSMC Y Y|Y Y Sl
161 | Composite MSC Y
163 | Modified Crushable Foam
164 | Brain Linear Viscoelastic
166 | Moment Curvature Beam Y
169 | Arup Adhesive Y Y Y Pb
170 | Resultant Anisotropic Y Y Pl
175 | Viscoelastic Thermal Y Y Y|Y Y |RDb
176 | Quasilinear Viscoelastic
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Notes:
Gn  General
Cm Composites
Cr  Ceramics
%) ° FI  Fluids
g E % o|Fm Foam
= I @ B|Gl Glas
> 0 =2 g 5 {G|Hy Hydro-dyn
=z gﬁqwgaMt Metal
T 2 2% xls s ® EP Plastic
© 88559%32% Rubber
= | Material Title M@ - @ WL Wig  sil/Conc
177 | Hill Foam
178 | Viscoelastic Hill Foam
179 | Low Density Synthetic Foam
181 | Simplified Rubber
183 | Simplified Rubber with Damage Y Y Y[Y Y Rb
184 | Cohesive Elastic Y Y Cm, Mt
185 | Cohesive TH Y Y Cm, Mt
191 | Seismic Beam Y
192 | Soil Brick Y
193 | Drucker Prager Y
194 | RC Shear Wall Y
195 | Concrete Beam Y
196 | General Spring Discrete Beam Y
197 | Seismic Isolator Y Y Mt
198 | Jointed Rock Y Y
DS1 | Spring Elastic (Linear) Y
DS2 | Damper Viscous (Linear) Y Y
DS3 | Spring Elastoplastic (Isotropic) Y
DS4 | Spring Nonlinear Elastic Y Y
DS5 | Damper Nonlinear Elastic Y Y
DS6 | Spring General Nonlinear Y
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Notes:
Gn  General
Cm Composites
Cr  Ceramics
%) ° FI  Fluids
g E % o|Fm Foam
= I @ B|Gl Glas
> 0 =2 g 5 {G|Hy Hydro-dyn
= gﬁqwgaMt Metal
T 222 x%<s s % E|PlI  Plastic
® ©S gz 2S5 2 Z|Rb Rubber
= | Material Title M@ - @ WL Wig  sil/Conc
DS7 | Spring Maxwell (Three Parameter Viscoelastic) Y Y
DS8 | Spring Inelastic (Tension or Compression) Y
DS13 | Spring Trilinear Degrading
DS14 | Spring Squat Shearwall
DS15 | Spring Muscle
SB1 | Seatbelt
TO1 | Thermal Isotropic Y Y Y
T02 | Thermal Orthotropic Y Y Y
T03 | Thermal Isotropic (Temp. Dependent) Y Y Y
T04 | Thermal Orthotropic (Temp. Dependent) Y Y Y
TO05 | Thermal Isotropic (Phase Change) Y Y Y
T06 | Thermal Isotropic (Temp Dep-Load Curve) Y Y Y
T11 | Thermal User Defined Y Y Y
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Material Model 1: Elastic
In this elastic material we compute the co-rotational rate of the deviatoric Cauchy stress

s n+}é — ZG[:, }é 19 l 1
j Ij ( = )

and pressure

prt =—KInv™ (19.1.2)

where G and K are the elastic shear and bulk moduli, respectively, and V is the relative
volume, i.e., the ratio of the current volume to the initial volume.

Material Model 2: Orthotropic Elastic
The material law that relates second Piola-Kirchhoff stress S to the Green-St. Venant
strain E is

S=C.-E=T'CT-E (19.2.1)

where T is the transformation matrix [Cook 1974].

2 o lm mn, nl,
l;  m n; l,m, myn, nyl,
2 2 2

2l), 2mm, 2nn, (Lm+lm) (mn,+mn) (nl,+nyl)
2l,l; 2mm, 2n,n, (I,m+l,m) (mn,+mn,) (nly+nyl,)
2, 2mm 2nn (Im+lm)  (mn+mny) (gl +nly)

[, m, n are the direction cosines
X =1x+mx, +nx, fori=1,2,3 (19.2.3)

and x denotes the material axes. The constitutive matrix C, is defined in terms of the material
axes as

19.14



LS-DYNA Theory Manual Material M odels
I 1 Pa Vs 0 0 0 |
Ell E22 E33
e 1 Vs 0 0 0
E11 E22 E33
Vs Vs 1 0 0 0
lel — E11 Ezz E33 (19.2.4)
0 0 0 1 0 0
G,
0 0 0 0 1 0
G23
0 0 0 0 0 1
L GSl i
where the subscripts denote the material axes, i.e.,
V)= U and  E = E, (19.2.5)
Since C, is symmetric
v v
=2 = 2 etc (19.2.6)
Ell E22
The vector of Green-St. Venant strain components is
E'= LE111 E, B Ep By, E31'J (19.2.7)

After computing §;, we use Equation (18.32) to obtain the Cauchy stress. This model will
predict realistic behavior for finite displacement and rotations as long as the strains are small.

Material Model 3: Elastic Plastic with Kinematic Hardening
Isotropic, kinematic, or a combination of isotropic and kinematic hardening may be
obtained by varying a parameter, called S between 0 and 1.
respectively, kinematic and isotropic hardening are obtained as shown in Figure 19.3.1. Krieg
and Key [1976] formulated this model and the implementation is based on their paper.
In isotropic hardening, the center of the yield surface is fixed but the radius is a function
of the plastic strain. In kinematic hardening, the radius of the yield surface is fixed but the center

translates in the direction of the plastic strain. Thus the yield condition is

2

Lo O
9=56&-2=0

For S equal to 0 and 1,

(19.3.1)
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where
& =5-09 (19.3.2)
o,=0,+ PE, &k (19.3.3)

The co-rotational rate of ¢ is
v _ 2 .

o =(1-p) 3 E, & (19.3.4)

Hence,
ot =ap+(o o @ e, 20 A, (19.35)

Strain rate is accounted for using the Cowper-Symonds [Jones 1983] model which scales
the yield stress by a strain rate dependent factor

&P
o, :{H(Ej }(0'0 +PE, €5 ) (19.3.6)
where p and C are user defined input constants and ¢ is the strain rate defined as:
NG (19.3.7)

The current radius of the yield surface, o, is the sum of the initial yield strength, o, plus the
growth BE e ,where E | is the plastic hardening modulus

E.E
E, = (19.3.8)
E-E
and &k is the effective plastic strain
(2, .Y)
eh = j (58‘? gi;’j dt (19.3.9)
0
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A

Ere

yield
stress

=0 kinematic hardening

B=1 isotropic hardening

Figure 19.3.1. Elastic-plastic behavior with isotropic and kinematic hardening where lp and | are
the undeformed and deformed length of uniaxial tension specimen, respectively.

The plastic strain rate is the difference between the total and elastic (right superscript €)
strain rates:

&=e,-¢& (19.3.10)

In the implementation of this material model, the deviatoric stresses are updated
elastically, as described for model 1, but repeated here for the sake of clarity:

o':; = O-i? +C‘jklAgk| (19.3.11)

where

is the trial stress tensor,

o is the stress tensor from the previous time step,
Cy  Isthe elastic tangent modulus matrix,

Ag, is the incremental strain tensor.
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and, if the yield function is satisfied, nothing else is done. If, however, the yield function is
violated, an increment in plastic strain is computed, the stresses are scaled back to the yield
surface, and the yield surface center is updated.

Let s; represent the trial elastic deviatoric stress state at n+1

ST = o';; —Loy (19.3.12)
and
é‘ij =5 - . (19.3.13)

Define the yield function,

o < 0 for elastic or neutral loadin
¢=§é‘5 | —o,=A" -0, o 9 (19314
2 >0 for plastic harding
For plastic hardening then
n+1 n A—G n
e =gl +—L =8 +Aed 19.3.15
eff eff 3G + Ep eff eff ( )
scale back the stress deviators
. 3GAgL
ot =0 - L& (19.3.16)
A
and update the center:
1-B)E,_ Aek
g UP)E, A & (19.3.17)

i T A j

Plane Stress Plasticity

The plane stress plasticity options apply to beams, shells, and thick shells. Since the
stresses and strain increments are transformed to the lamina coordinate system for the
constitutive evaluation, the stress and strain tensors are in the local coordinate system.

The application of the Jaumann rate to update the stress tensor allows for the possibility

that the normal stress, o,,, will not be zero. The first step in updating the stress tensor is to

compute a trial plane stress update assuming that the incremental strains are elastic. In the
above, the normal strain increment Ag,, is replaced by the elastic strain increment

Ot A(Ag, +As,)

(19.3.18)
A+2u

A&, =
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where A and u are Lameé’s constants.

When the trial stress is within the yield surface, the strain increment is elastic and the
stress update is completed. Otherwise, for the plastic plane stress case, secant iteration is used to
solve Equation (19.3.16)for the normal strain increment (Aeg,,) required to produce a zero

normal stress:

.. 3GAe£P
oL, =0y _3GA&uon (19.3.19)
A
Here, the superscript i indicates the iteration number.
The secant iteration formula for Ae,, (the superscript p is dropped for clarity) is

i _Apl
Aly —Agy oy (19.3.20)

i+1

Ayt = Agl —

i i—1
O33 =03

where the two starting values are obtained from the initial elastic estimate and by assuming a
purely plastic increment, i.e.,

Agy, =—(Ag, —Agy,) (19.3.21)

These starting values should bound the actual values of the normal strain increment.
The iteration procedure uses the updated normal stain increment to update first the
deviatoric stress and then the other quantities needed to compute the next estimate of the normal

stress in Equation (19.3.19). The iterations proceed until the normal stress o3, is sufficiently
small. The convergence criterion requires convergence of the normal strains:

‘Aggs —~ Aeggl‘

_ <10™ 19.3.22
\Agggl ( )

After convergence, the stress update is completed using the relationships given in Equations
(19.3.16) and (19.3.17)

Material Model 4: Thermo-Elastic-Plastic
This model was adapted from the NIKE2D [Hallquist 1979] code. A more complete

description of its formulation is given in the NIKE2D user’s manual.
Letting T represent the temperature, we compute the elastic co-rotational stress rate as

oy =Cy (84—&4)+ 6, dT (19.4.1)

where
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. dCy,
6, =~y G (19.4.2)

and C;,, is the temperature dependent elastic constitutive matrix:

v v v 0 0 0
v v v 0 0 0
v v 1o 0 0 0
1-2v
E 0 0 0 =2 o0 0
C=——— 19.4.3
T (1) (1-20) 2 (19.43)
0 0 0 0 % 0
2
0 0 0 0 0 %

where v is Poisson’s ratio. The thermal strain rate can be written in terms of the coefficient of
thermal expansion « as:

& =ats, (19.4.4

When treating plasticity, we use a procedure analogous to that for material 3. We update
the stresses elastically and check to see if we violate the isotropic yield function

1. o)
¢ = > Si S 3 (19.4.5)
where
o, M=0o,(T)+ E, (T) ek (19.4.6)

The initial yield, o,, and plastic hardening modulus, E,, are temperature dependent. If the
behavior is elastic we do nothing; otherwise, we scale back the stress deviators by the factor f:

5" =15 (19.4.7)
where

R — (19.4.8)
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and update the plastic strain by the increment

b
3 & Xk
o=t 355

AeP = 19.4.9
o G+3E, ( )

Material Model 5: Soil and Crushable Foam

This model, due to Krieg [1972], provides a simple model for foam and soils whose
material properties are not well characterized. We believe the other foam models in LS-DYNA
are superior in their performance and are recommended over this model which simulates the
crushing through the volumetric deformations. If the yield stress is too low, this foam model
gives nearly fluid like behavior.

A pressure-dependent flow rule governs the deviatoric behavior:

1
0:=255, ~(ay+ap+a,p’) (19.5.1)

where a,, a, and a, are user-defined constants. Volumetric yielding is determined by a

tabulated curve of pressure versus volumetric strain. Elastic unloading from this curve is
assumed to a tensile cutoff as illustrated in Figure 19.5.1.

Implementation of this model is straightforward. One history variable, the maximum
volumetric strain in compression, is stored. If the new compressive volumetric strain exceeds the
stored value, loading is indicated. When the yield condition is violated, the updated trial

stresses, |, are scaled back using a simple radial return algorithm:

%

a,+a,p+a,p?| .
1 _| S THPTED | o (19.5.2)

i 1 i

ESj S;

If the hydrostatic tension exceeds the cutoff value, the pressure is set to the cutoff value and the
deviatoric stress tensor is zeroed.
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A
pressure
Loading and unloading follows the input
curve if the volumetric crushing option is
off (VCR=1.0) /
<>
The bulk unloading modulus is used if the
In %) volumetric crushing option is on (VCR=0)
0
. - : —
tension Volumetric strain
-« \ > « > (compression)
tension cutoff value

Figure 19.5.1. Volumetric strain versus pressure curve for soil and crushable foam model.

Material Model 6: Viscoelastic
In this model, linear viscoelasticity is assumed for the deviatoric stress tensor [Herrmann
and Peterson 1968]:

t 9%, (7)
S, =2£ ¢(t—r)7dr (19.6.1)

where
9(t)=G.+(G,-G.)e” (19.6.2)

is the shear relaxation modulus. A recursion formula is used to compute the new value of the
hereditary integral at time t"* from its value at time t". Elastic bulk behavior is assumed:

p=KInV (19.6.3)

where pressure is integrated incrementally.
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Material Model 7: Continuum Rubber
The hyperelastic continuum rubber model was studied by Blatz and Ko [1962]. In this
model, the second Piola-Kirchhoff stress is given by

1
S :G[V 1C, -V 1—2v5”.] (19.7.1)

where G is the shear modulus, V is the relative volume, v is Poisson’s ratio, and C; is the
right Cauchy-Green strain:

' :8_Xké’_>q< (19.7.2)
79X, 9X,

after determining §; , it is transformed into the Cauchy stress tensor, o;; :

o zﬁﬁ%% o =P I% 9% s, (19.7.3)
TP X, 09X, TPy IX IX

where p, and p are the initial and current density, respectively. The default value of v is
0.463.

Material Model 8: Explosive Burn

Burn fractions, which multiply the equations of states for high explosives, control the
release of chemical energy for simulating detonations. In the initialization phase, a lighting time
t, is computed for each element by dividing the distance from the detonation point to the center
of the element by the detonation velocity D. If multiple detonation points are defined, the
closest point determines t,. The burn fraction F is taken as the maximum

F=max(F,F,) (19.8.1)
where
2(t—t)D
2(t=4)b if t>t,
Ve
F= B(AM} (19.8.2)
0 ift<t,
F, = 1=V (19.8.3)
1-V,,
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where V, is the Chapman-Jouguet relative volume and t is current time. If F exceeds 1, it is

reset to 1. This calculation of the burn fraction usually requires several time steps for F to reach
unity, thereby spreading the burn front over several elements. After reaching unity, F is held
constant. This burn fraction calculation is based on work by Wilkins [1964] and is also
discussed by Giroux [1973].

As an option, the high explosive material can behave as an elastic perfectly-plastic solid

n+l

prior to detonation. In this case we update the stress tensor, to an elastic trial stress, *s™,

*§ =g +5,02, +5,92, +2G&, dt (19.8.4)

j
where G is the shear modulus, and £ is the deviatoric strain rate. The von Mises yield
condition is given by:

2

6=1, —% (19.8.5)

where the second stress invariant, J,, is defined in terms of the deviatoric stress components as
1
=285 (19.8.6)

and the yield stress is o, . If yielding has occurred, i.e., ¢ >0, the deviatoric trial stress is scaled
to obtain the final deviatoric stress at time n+1:

(o2
rj‘l+l :—Y* ?+1 (19.8.7)
37,
If <0, then
s =*q" (19.8.8)

Before detonation pressure is given by the expression

o™ = K (ﬁ‘lj (19.8.9)

where K is the bulk modulus. Once the explosive material detonates:
s =0 (19.8.10)

and the material behaves like a gas.
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The shadow burn option should be active when computing the lighting time if there exist
elements within the mesh for which there is no direct line of sight from the detonation points.
The shadow burn option is activated in the control section. The lighting time is based on the
shortest distance through the explosive material. If inert obstacles exist within the explosive
material, the lighting time will account for the extra time required for the detonation wave to
travel around the obstacles. The lighting times also automatically accounts for variations in the
detonation velocity if different explosives are used. No additional input is required for the
shadow option but care must be taken when setting up the input. This option works for two and
three-dimensional solid elements. It is recommended that for best results:

1. Keep the explosive mesh as uniform as possible with elements of roughly the same
dimensions.

2. Inert obstacle such as wave shapers within the explosive must be somewhat larger
than the characteristic element dimension for the automatic tracking to function
properly. Generally, a factor of two should suffice. The characteristic element
dimension is found by checking all explosive elements for the largest diagonal

3. The detonation points should be either within or on the boundary of the explosive.
Offset points may fail to initiate the explosive.

4. Check the computed lighting times in the post processor LS-PREPOST. The lighting
times may be displayed at time=0., state 1, by plotting component 7 (a component
normally reserved for plastic strain) for the explosive material. The lighting times are
stored as negative numbers. The negative lighting time is replaced by the burn
fraction when the element ignites.

Line detonations may be approximated by using a sufficient number of detonation points
to define the line. Too many detonation points may result in significant initialization cost.

Material Model 9: Null Material

For solid elements equations of state can be called through this model to avoid deviatoric
stress calculations. A pressure cutoff may be specified to set a lower bound on the pressure.
This model has been very useful when combined with the reactive high explosive model where
material strength is often neglected. The null material should not be used to delete solid
elements.

An optional viscous stress of the form

O = U&;

is computed for nonzero u where £ is the deviatoric strain rate.

Sometimes it is advantageous to model contact surfaces via shell elements which are not
part of the structure, but are necessary to define areas of contact within nodal rigid bodies or
between nodal rigid bodies. Beams and shells that use this material type are completely
bypassed in the element processing. The Young’s modulus and Poisson’s ratio are used only for
setting the contact interface stiffnesses, and it is recommended that reasonable values be input.
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Material Model 10: Elastic-Plastic-Hydrodynamic
For completeness we give the entire derivation of this constitutive model based on radial
return plasticity.

The pressure, p, deviatoric strain rate, &

. » deviatoric stress rate, §;, volumetric strain

rate, and &, , are defined in Equation (19.10.1):

1 ,
p__go-ij é‘ij 8” :glj —5&
5 =0+ pé‘ij £, = g"ij é‘ij (19.10.1)

3jv =2u gl,] = 2Gé},j

The Jaumann rate of the deviatoric stress, sﬁv, IS given by:

S =8~ Sy — 542, (19.10.2)
First we update § to §' elastically
*§ =g +§,42, +5,92, +2G&; dt =g + R, +2G¢] dt (19.10.3)
RN ZGAS{J'

Sj

where the left superscript, *, denotes a trial stress value. The effective trial stress is defined by
(3o )’
S>s — (E *Srj'ﬁ—l *Srjﬁ—lj (19104)

and if s™ exceeds yield stress o, , the Von Mises flow rule:

2

1 o
0=255 <0 (19.10.5)

is violated and we scale the trial stresses back to the yield surface, i.e., a radial return

N+ Oy . n+ # N+
s = sy §t=m'g" (19.10.6)
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The plastic strain increment can be found by subtracting the deviatoric part of the strain

n+1

increment that is elastic, —(sj SJR) from the total deviatoric increment, Ag, i.e.,

AgP = Ag] ——(s”“+l -57) (19.10.7)

Recalling that,

# N+l R"
A = "%

19.10.8
1] ZG ( )

and substituting Equation (19.10.8) into (19.10.7) we obtain,

® _ ol
Ag? :% (19.10.9)
Substituting Equation (19.10.6)
sI;-Hl. — m sr]'H—l
into Equation (19.10.9) gives,
AeP= (12_—Gm) = 1 s’f“ das (19.10.10)
By definition an increment in effective plastic strain is
2 7
AeP = (gAg”P Agijpj (19.10.12)
Squaring both sides of Equation (19.10.10) leads to:
p p 1-m N+l # QN+l
Agii Agij = z ﬁl SJ (191012)
or from Equations (19.10.4) and (19.10.11):
2
%Ag"z :(12‘_6”1) %s*z (19.10.13)

Hence,
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LAgP="_—5' = y (19.10.14)

e
If isotropic hardening is assumed then:
oyt =0, +EPAe’ (19.10.15)

and from Equation (19.10.14)

AeP ="V ) (19.10.16)

Thus,
(3G+EP)AeP =(s"-0a))

y

and solving for the incremental plastic strain gives

,_(s-9))
AeP = (5] (19.10.17)

The algorithm for plastic loading can now be outlined in five simple stress. If the effective trial
stress exceeds the yield stress then

1. Solve for the plastic strain increment:

o [s=0))
(3G+EP)

2. Update the plastic strain:
e =" + Ag”.
3. Update the yield stress:

O"y”l =0y +EPAe®
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4. Compute the scale factor using the yield strength at time n+1:
1
5. Radial return the deviatoric stresses to the yield surface:
Srj1+l — m*srjw—l

Material Model 11: Elastic-Plastic With Thermal Softening
Steinberg and Guinan [1978] developed this model for treating plasticity at high strain

rates (10° s 1) where enhancement of the yield strength due to strain rate effects is saturated out.
Both the shear modulus G and yield strength o, increase with pressure but decrease

with temperature. As a melt temperature is reached, these quantities approach zero. We define
the shear modulus before the material melts as

fE

G =G, {1+ bpV % —h [ES_TEC— 300)} e & F (19.11.1)

where G,, b, h,and f are input parameters, E_ is the cold compression energy:

E.(X) :JX‘ pdx — 200 R/f(fp_gi))() ! (19.11.2)
0 (1-x)*
where
X=1-V, (19.11.3)
and E,, is the melting energy:
E. (X)=E, (X)+ 3RT, (X) (19.11.4)
which is a function of the melting temperature T_, (X):
T (X)= Ty €XP(22X) (19.11.5)

(1_)( )2(70*51*%)

and the melting temperature T at p = p,. The constants y, and a are input parameters. In
the above equation, R’ is defined by
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R=TFP (19.11.6)
A

where R is the gas constant and A is the atomic weight. The yield strength o, is given by:

, , % E_EC 7E;EE
o,=0, |1+bpV~-h 300 |e (19.11.7)

If E,, exceeds E . Here, o, isgiven by:
o, = o, [1+ ,8(;4 +gpﬂ (19.11.8)

where , is the initial plastic strain, and b’ and o] are input parameters. Where o, exceeds
O, » the maximum permitted yield strength, o, is set to equal to o,, . After the material
melts, o, and G are set to zero.

LS-DYNA fits the cold compression energy to a ten-term polynomial expansion:

9
E.=) EC7n' (19.11.9)
i=0
where EC, is the ith coefficient and 77 = P The least squares method is used to perform the fit
Yo,

o

[Kreyszig 1972]. The ten coefficients may also be specified in the input.
Once the yield strength and shear modulus are known, the numerical treatment is similar
to that for material model 10.

Material Model 12: Isotropic Elastic-Plastic
The von Mises yield condition is given by:

0.2

é=1J, —?V (19.12.1)

where the second stress invariant, J,, is defined in terms of the deviatoric stress components as

1
=255 (19.12.2)
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and the yield stress, o, is a function of the effective plastic strain, £, and the plastic
hardening modulus, E,:

o,=0,+E £k (19.12.3)

The effective plastic strain is defined as:

t
ef = [dek (19.12.4)

0

where def, = /%de‘”.pdgijp

and the plastic tangent modulus is defined in terms of the input tangent modulus, E,, as

E, - _E& (19.12.5)
E-E
Pressure is given by the expression
n+1 1

where K is the bulk modulus. This is perhaps the most cost effective plasticity model. Only
one history variable, €%, , is stored with this model.

This model is not recommended for shell elements. In the plane stress implementation, a
one-step radial return approach is used to scale the Cauchy stress tensor to if the state of stress
exceeds the yield surface. This approach to plasticity leads to inaccurate shell thickness updates
and stresses after yielding. This is the only model in LS-DYNA for plane stress that does not
default to an iterative approach.

Material Model 13: Isotropic Elastic-Plastic with Failure
This highly simplistic failure model is occasionally useful. Material model 12 is called to
update the stress tensor. Failure is initially assumed to occur if either

n+1l

p < pmin (19131)
or

ey >eb

max

(19.13.2)
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where p,,, and &b are user-defined parameters. Once failure has occurred, pressure may

never be negative and the deviatoric components are set to zero:

=0 (19.13.3)

for all time. The failed element can only carry loads in compression.

Material Model 14: Soil and Crushable Foam With Failure

This material model provides the same stress update as model 5. However, if pressure
ever reaches its cutoff value, failure occurs and pressure can never again go negative. In material
model 5, the pressure is limited to its cutoff value in tension.

Material Model 15: Johnson and Cook Plasticity Model
Johnson and Cook express the flow stress as

o,=(A+BE")(1+cn&)(1-T=") (19.15.1)
where A, B, C, n, and m are user defined input constants, and:

£P = effective plastic strain
=P
&%= g— effective plastic strain rate for £,=1s™

80
*_ T _Troom
Tmelt - Troom

Constants for a variety of materials are provided in Johnson and Cook [1983].

Due to the nonlinearity in the dependence of flow stress on plastic strain, an accurate
value of the flow stress requires iteration for the increment in plastic strain. However, by using a
Taylor series expansion with linearization about the current time, we can solve for o, with

sufficient accuracy to avoid iteration.
The strain at fracture is given by

¢' =[D, +D,expD, 0" |[1+D, Ing" |[1+D,T" | (19.15.2)

where D, i=1,...,5 are input constants and o~ is the ratio of pressure divided by effective stress:

o =L (19.15.3)
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Fracture occurs when the damage parameter

p

AF
D=Y =% (19.15.4)
£
reaches the value 1.
A choice of three spall models is offered to represent material splitting, cracking, and
failure under tensile loads. The pressure limit model limits the minimum hydrostatic pressure to
the specified value, p=> p,,,. If pressures more tensile than this limit are calculated, the pressure

is reset to p,,,. This option is not strictly a spall model since the deviatoric stresses are
unaffected by the pressure reaching the tensile cutoff and the pressure cutoff value p,,, remains

unchanged throughout the analysis. The maximum principal stress spall model detects spall if
the maximum principal stress, o,.,, exceeds the limiting value o,. Once spall is detected with

this model, the deviatoric stresses are reset to zero and no hydrostatic tension is permitted. If
tensile pressures are calculated, they are reset to 0 in the spalled material. Thus, the spalled
material behaves as rubble. The hydrostatic tension spall model detects spall if the pressure

becomes more tensile than the specified limit, p,,. Once spall is detected, the deviatoric

stresses are set to zero and the pressure is required to be compressive. If hydrostatic tension is
calculated then the pressure is reset to 0 for that element.

In addition to the above failure criterion, this material model also supports a shell element
deletion criterion based on the maximum stable time step size for the element, At . Generally,

At goes down as the element becomes more distorted. To assure stability of time integration,
the global LS-DYNA time step is the minimum of the At values calculated for all elements in
the model. Using this option allows the selective deletion of elements whose time step At has
fallen below the specified minimum time step, At,,. Elements which are severely distorted

often indicate that material has failed and supports little load, but these same elements may have
very small time steps and therefore control the cost of the analysis. This option allows these
highly distorted elements to be deleted from the calculation, and, therefore, the analysis can
proceed at a larger time step, and, thus, at a reduced cost. Deleted elements do not carry any
load, and are deleted from all applicable slide surface definitions. Clearly, this option must be
judiciously used to obtain accurate results at a minimum cost.

Material type 15 is applicable to the high rate deformation of many materials including
most metals. Unlike the Steinberg-Guinan model, the Johnson-Cook model remains valid down
to lower strain rates and even into the quasistatic regime. Typical applications include explosive
metal forming, ballistic penetration, and impact.

Material Model 16: Pseudo Tensor

This model can be used in two major modes - a simple tabular pressure-dependent yield
surface, and a potentially complex model featuring two yield versus pressure functions with the
means of migrating from one curve to the other. For both modes, load curve N1 is taken to be a
strain rate multiplier for the yield strength. Note that this model must be used with equation-of-
state type 8 or 9.
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Response Mode|. Tabulated Yield StressVersus Pressure

This model is well suited for implementing standard geologic models like the Mohr-
Coulomb yield surface with a Tresca limit, as shown in Figure 19.16.1. Examples of converting
conventional triaxial compression data to this type of model are found in (Desai and Siriwardane,
1984). Note that under conventional triaxial compression conditions, the LS-DYNA input

corresponds to an ordinate of o, — o, rather than the more widely used %, where o is the

maximum principal stress and o is the minimum principal stress.

This material combined with equation-of-state type 9 (saturated) has been used very
successfully to model ground shocks and soil-structure interactions at pressures up to 100kbar.

A
Mohr-Coulomb

Tresca

c1-03 %

Friction Angle

/ i
Cohesion
\ 4

Figure 19.16.1. Mohr-Coulomb surface with a Tresca limit.

Pressure

To invoke Mode | of this model, set ag, a1, ap, by, ags, and ajs to zero. The tabulated
values of pressure should then be specified on cards 4 and 5, and the corresponding values of
yield stress should be specified on cards 6 and 7. The parameters relating to reinforcement
properties, initial yield stress, and tangent modulus are not used in this response mode, and
should be set to zero.

Simpletensilefailure

Note that ajf is reset internally to 1/3 even though it is input as zero; this defines a
material failure curve of slope 3p, where p denotes pressure (positive in compression). In this
case the yield strength is taken from the tabulated yield vs. pressure curve until the maximum

principal stress (o;) in the element exceeds the tensile cut-off (o, ). For every time step that
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o, > o,, the yield strength is scaled back by a fraction of the distance between the two curves
until after 20 time steps the yield strength is defined by the failure curve. The only way to inhibit
this feature is to set o, arbitrarily large.

cut

Response Mode | I. Two-Curve Model with Damage and Failure

This approach uses two yield versus pressure curves of the form

p
o, =a,+ (19.16.1)
=% a +a,p

The upper curve is best described as the maximum vyield strength curve and the lower curve is
the material failure curve. There are a variety of ways of moving between the two curves and
each is discussed below.

o = a,t
max a + ap

Yield

Stuiled ~ Gor *

\

Pressure

Figure 19.16.2. Two-curve concrete model with damage and failure.

MODE II.A: Simpletensilefailure
Define ag, a;, ap, agf and asf, set by to zero, and leave cards 4 through 7 blank. In this

case the yield strength is taken from the maximum yield curve until the maximum principal
stress (o) in the element exceeds the tensile cut-off (o, ). For every time step that o, > o,

the yield strength is scaled back by a fraction of the distance between the two curves until after
20 time steps the yield strength is defined by the failure curve.
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Modell.B: Tensilefailure plusplastic strain scaling
Define ag, a1, ap, agf and azf, set by to zero, and user cards 4 through 7 to define a scale

factor, m, versus effective plastic strain. LS-DYNA evaluates 1 at the current effective plastic
strain and then calculated the yield stress as

Oyied = Otaited + M (Orax — O tstea) (19.16.2)

where o, and o, are found as shown in Figure 19.16.2. This yield strength is then subject

to scaling for tensile failure as described above. This type of model allows the description of a
strain hardening or softening material such as concrete.

Modell.C: Tensilefailure plus damage scaling

The change in vyield stress as a function of plastic strain arises from the physical
mechanisms such as internal cracking, and the extent of this cracking is affected by the
hydrostatic pressure when the cracking occurs. This mechanism gives rise to the "confinement"
effect on concrete behavior. To account for this phenomenon, a "damage™ function was defined
and incorporated. This damage function is given the form:

eP -by
A=[l1+-2 ) der (19.16.3)
0 (o)

cut
Define ag, a1, ap, apf and ayf, and by. Cards 4 though 7 now give 1 as a function of A and scale
the yield stress as

Oyietd = O taited T 71 (Gmax ~ O tailed ) (19.16.4)

and then apply any tensile failure criteria.

Modell Concrete Mode Options
Material Type 16 Mode Il provides the option of automatic internal generation of a

simple "generic" model for concrete. If ag is negative, then o, is assumed to be the unconfined

ut

concrete compressive strength, f. and -ag is assumed to be a conversion factor from LS-DYNA

pressure units to psi. (For example, if the model stress units are MPa, ag should be set to —145.)
In this case the parameter values generated internally are
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_f

%=

31:% (19.16.5)
_1

% =37

3y, =0

a, =0.385

Note that these apf and ajt defaults will be overwritten by non-zero entries on Card 3. If plastic
strain or damage scaling is desired, Cards 5 through 8 and b, should be specified in the input.
When ag is input as a negative quantity, the equation-of-state can be given as 0 and a trilinear
EOS Type 8 model will be automatically generated from the unconfined compressive strength
and Poisson's ratio. The EOS 8 model is a simple pressure versus volumetric strain model with
no internal energy terms, and should give reasonable results for pressures up to 5Skbar
(approximately 72,500 psi).

Mixture model
A reinforcement fraction, f , can be defined along with properties of the reinforcing

material. The bulk modulus, shear modulus, and yield strength are then calculated from a simple
mixture rule, i.e., for the bulk modulus the rule gives:

K=(1-f,)K,+fK, (19.16.6)

where K and K, are the bulk moduli for the geologic material and the reinforcing material,

respectively. This feature should be used with caution. It gives an isotropic effect in the
material instead of the true anisotropic material behavior. A reasonable approach would be to
use the mixture elements only where reinforcing material exists and plain elements elsewhere.
When the mixture model is being used, the strain rate multiplier for the principal material is
taken from load curve N1 and the multiplier for the reinforcement is taken from load curve N2.

Material Model 17: Isotropic Elastic-Plastic With Oriented Cracks
This is an isotropic elastic-plastic material which includes a failure model with an
oriented crack. The von Mises yield condition is given by:

2

6=1, —% (19.17.1)

where the second stress invariant, J,, is defined in terms of the deviatoric stress components as
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1
J; =555, (19.17.2)

and the yield stress, o, is a function of the effective plastic strain, &% , and the plastic hardening
modulus, E,:
o,=0,+E £k (19.17.3)

The effective plastic strain is defined as:

t
el = [dek (19.17.4)
0

where deg = ‘/gdg”pdgijp

and the plastic tangent modulus is defined in terms of the input tangent modulus, E, , as

E, - E& (19.17.5)
E-E,

Pressure in this model is found from evaluating an equation of state. A pressure cutoff
can be defined such that the pressure is not allowed to fall below the cutoff value.

The oriented crack fracture model is based on a maximum principal stress criterion.
When the maximum principal stress exceeds the fracture stress, o , the element fails on a plane

perpendicular to the direction of the maximum principal stress. The normal stress and the two
shear stresses on that plane are then reduced to zero. This stress reduction is done according to a
delay function that reduces the stresses gradually to zero over a small number of time steps. This
delay function procedure is used to reduce the ringing that may otherwise be introduced into the
system by the sudden fracture.

After a tensile fracture, the element will not support tensile stress on the fracture plane,
but in compression will support both normal and shear stresses. The orientation of this fracture
surface is tracked throughout the deformation, and is updated to properly model finite
deformation effects. If the maximum principal stress subsequently exceeds the fracture stress in
another direction, the element fails isotropically. In this case the element completely loses its
ability to support any shear stress or hydrostatic tension, and only compressive hydrostatic stress
states are possible. Thus, once isotropic failure has occurred, the material behaves like a fluid.

This model is applicable to elastic or elastoplastic materials under significant tensile or
shear loading when fracture is expected. Potential applications include brittle materials such as
ceramics as well as porous materials such as concrete in cases where pressure hardening effects
are not significant.
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Material Model 18: Power Law | sotropic Plasticity
Elastoplastic behavior with isotropic hardening is provided by this model. The yield
stress, o, , is a function of plastic strain and obeys the equation:

o,=ke"=k(e, +2°) (19.18.1)

y

where ¢ is the elastic strain to yield and £” is the effective plastic strain (logarithmic).

A parameter, SIGY, in the input governs how the strain to yield is identified. If SIGY is
set to zero, the strain to yield if found by solving for the intersection of the linearly elastic
loading equation with the strain hardening equation:

o=E¢
. (19.18.2)
o=ke
which gives the elastic strain at yield as:
2
£, = (EJM (19.18.3)
k
If SIGY yield is nonzero and greater than 0.02 then:
1
o, H
Ep = m (19.18.4)

Strain rate is accounted for using the Cowper-Symonds model which scales the yield stress with
the factor

N
1+(éj (19.18.5)

where £ is the strain rate. A fully viscoplastic formulation is optional with this model which
incorporates the Cowper-Symonds formulation within the yield surface. An additional cost is
incurred but the improvement allows for dramatic results.

Material Model 19: Strain Rate Dependent I sotropic Plasticity
In this model, a load curve is used to describe the yield strength o, as a function of

effective strain rate £ where

. %
§=(—gij g’ijj (19.19.1)
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and the prime denotes the deviatoric component. The yield stress is defined as

o,=0,(¢)+E,&° (19.19.2)

p

where £° is the effective plastic strain and E, is given in terms of Young’s modulus and the
tangent modulus by

(19.19.3)

Both Young's modulus and the tangent modulus may optionally be made functions of
strain rate by specifying a load curve ID giving their values as a function of strain rate. If these
load curve ID's are input as 0, then the constant values specified in the input are used.

Note that all load curves used to define quantities as a function of strain rate must
have the same number of points at the same strain rate values. This requirement is used to
allow vectorized interpolation to enhance the execution speed of this constitutive model.

This model also contains a simple mechanism for modeling material failure. This option
is activated by specifying a load curve ID defining the effective stress at failure as a function of
strain rate. For solid elements, once the effective stress exceeds the failure stress the element is
deemed to have failed and is removed from the solution. For shell elements the entire shell
element is deemed to have failed if all integration points through the thickness have an effective
stress that exceeds the failure stress. After failure the shell element is removed from the solution.

In addition to the above failure criterion, this material model also supports a shell element
deletion criterion based on the maximum stable time step size for the element, At . Generally,

At goes down as the element becomes more distorted. To assure stability of time integration,
the global LS-DYNA time step is the minimum of the At__, values calculated for all elements in
the model. Using this option allows the selective deletion of elements whose time step At has
fallen below the specified minimum time step, At,,. Elements which are severely distorted

often indicate that material has failed and supports little load, but these same elements may have
very small time steps and therefore control the cost of the analysis. This option allows these
highly distorted elements to be deleted from the calculation, and, therefore, the analysis can
proceed at a larger time step, and, thus, at a reduced cost. Deleted elements do not carry any
load, and are deleted from all applicable slide surface definitions. Clearly, this option must be
judiciously used to obtain accurate results at a minimum cost.

Material Type 20: Rigid

The rigid material type 20 provides a convenient way of turning one or more parts
comprised of beams, shells, or solid elements into a rigid body. Approximating a deformable
body as rigid is a preferred modeling technique in many real world applications. For example, in
sheet metal forming problems the tooling can properly and accurately be treated as rigid. In the
design of restraint systems the occupant can, for the purposes of early design studies, also be
treated as rigid. Elements which are rigid are bypassed in the element processing and no storage
is allocated for storing history variables; consequently, the rigid material type is very cost
efficient.

19.40



LS-DYNA Theory Manual Material M odels

Two unique rigid part IDs may not share common nodes unless they are merged together
using the rigid body merge option. A rigid body may be made up of disjoint finite element
meshes, however. LS-DYNA assumes this is the case since this is a common practice in setting
up tooling meshes in forming problems.

All elements which reference a given part ID corresponding to the rigid material should
be contiguous, but this is not a requirement. If two disjoint groups of elements on opposite sides
of a model are modeled as rigid, separate part ID's should be created for each of the contiguous
element groups if each group is to move independently. This requirement arises from the fact
that LS-DYNA internally computes the six rigid body degrees-of-freedom for each rigid body
(rigid material or set of merged materials), and if disjoint groups of rigid elements use the same
part ID, the disjoint groups will move together as one rigid body.

Inertial properties for rigid materials may be defined in either of two ways. By default,
the inertial properties are calculated from the geometry of the constituent elements of the rigid
material and the density specified for the part ID. Alternatively, the inertial properties and initial
velocities for a rigid body may be directly defined, and this overrides data calculated from the
material property definition and nodal initial velocity definitions.

Young's modulus, E, and Poisson's ratio, v are used for determining sliding interface
parameters if the rigid body interacts in a contact definition. Realistic values for these constants
should be defined since unrealistic values may contribute to numerical problem in contact.

Material Model 21: Thermal Orthotropic Elastic

In the implementation for three-dimensional continua a total Lagrangian formulation is
used. In this approach the material law that relates second Piola-Kirchhoff stress S to the
Green-St. Venant strain E is

S=C.-E=T'CT-E (19.21.1)

where T is the transformation matrix [Cook 1974].

2

oM m mn, n,
;3 m n l,m, myn, n,l,
2 2 2
T — |3 rnS n3 |3rnS n‘EnS n3|3 (19212)

21, 2mm, 2nn, (Im+l,m) (mn,+mn) (nl,+ny,)
2L, 2mm, 2n,n, (Im+1;m)  (mng+mn,) ()l +ny,)
121, 2mm  2nn (Ibm+Im)  (mn+mng)  (ngl, +nly)

[., m, n are the direction cosines

X =X +mx, +nx, fori=12,3 (19.21.3)
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and x denotes the material axes. The constitutive matrix C, is defined in terms of the material

axes as
I 1 Va Vs 0 0 0
Ell E22 ESS
Ve 1 Vs 0 0 0
Ell E22 E33
_Us Vs 1 0 0 0
Cl-lz Ey E, Es
0 0 0 1 0 0
G,
0 0 0 0 Gi 0
23
0 0 0 0 0 1
G31_

where the subscripts denote the material axes, i.e.,

Vj= Uy and  Ei= E

Since C, is symmetric

v, D
L2 -2 etc.

11 22

The vector of Green-St. Venant strain components is

E' :LEu’ E, By Eb By, E31'_|

which include the local thermal strains which are integrated in time:

gn+l — g.:a'i'aa (Tn+l _Tn)

aa
n+l _ .n n+l n
Ep =& T (T -T )

gn+l =€Qc+05c (Tn+1_-|-n)

cc

(19.21.4)

(19.21.5)

(19.21.6)

(19.21.7)

(19.21.8)

After computing §; we use Equation (18.32) to obtain the Cauchy stress. This model will

predict realistic behavior for finite displacement and rotations as long as the strains are small.

For shell elements, the stresses are integrated in time and are updated in the corotational
coordinate system. In this procedure the local material axes are assumed to remain orthogonal in
the deformed configuration. This assumption is valid if the strains remain small.
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Material Model 22: Chang-Chang Composite Failure Model
Five material parameters are used in the three failure criteria. These are [Chang and

Chang 1987a, 1987b]:

» S, longitudinal tensile strength

» S, transverse tensile strength

* S, shear strength

* C,, transverse compressive strength

* o, nonlinear shear stress parameter.

S.,S,,S,, and C, are obtained from material strength measurement. « is defined by material
shear stress-strain measurements. In plane stress, the strain is given in terms of the stress as

& :i(o-l 010'2)
E
£, =i(0'2 -0,0,) (19.22.1)
E,
1 3
28, =—1,tor,

The third equation defines the nonlinear shear stress parameter « .
A fiber matrix shearing term augments each damage mode:

2
2712+iar1‘§
:6212—3 (19.22.2)
SAZ + 70534;
2G, 4

Al

which is the ratio of the shear stress to the shear strength.
The matrix cracking failure criteria is determined from

2
0. _
I:matrix = (gzj +7 (19223)

where failure is assumed whenever F_. >1. If F_. >1, then the material constants

matrix
E,, G,, v, and v, are set to zero.
The compression failure criteria is given as
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Foorrp=( % j {[ < j —1}ﬁ+7 (19.22.4)
28, 28 C,

where failure is assumed whenever F,, >1. |If F_, >1, then the material constants

E,, v,and v, are set to zero.
The final failure mode is due to fiber breakage.

Ffiper =(%) +7 (19.22.5)

Failure is assumed whenever F; . >1. If F, >1, then the constants E E,, G,, v, and v,
are set to zero.

Material Model 23: Thermal Orthotropic Elastic with 12 Curves
In the implementation for three-dimensional continua a total Lagrangian formulation is
used. In this approach the material law that relates second Piola-Kirchhoff stress S to the Green-

St. Venant strain E is
S=C-E=TtC,T-E (19.23.1)

where T is the transformation matrix [Cook 1974].

2

oM m mn, n,
l;  m n l,m, myn, n,l,
2 2 2
T — |3 rnS n3 |3rnS n‘EnS n3|3 (19232)

2ll, 2mm, 2nn, (Im+l,m) (mn,+mn) (nl,+ny,)
2L, 2mm, 2n,n, (Imy+1;m)  (mng+mn,)  (n,l;+ny,)
121, 2mm  2nn (Ibm+Im)  (mn+mng)  (ngl, +nly)

[, m, n are the direction cosines
X =1.X +mx, +nx, fori=12,3 (19.23.3)

and x denotes the material axes. The temperature dependent constitutive matrix C, is defined
in terms of the material axes as
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Material Models

1 Uy (T) Vs (T)
E.(T) E,,(T) Ey(T)
Uy (T) 1 Uy (T)
Ex(T) En(T)  Ex(T)
_1)13 (T) _ Uz (T) 1
cio| Eu(T) En(T) Eu(T)
0 0 0
0 0 0
0 0 0

where the subscripts denote the material axes, i.e.,

V; =0y and E=E,
Since C, is symmetric
v v
_12 = i , etc.
11 22

The vector of Green-St. Venant strain components is

E' :LEil’ E. Es By By E31'_|

which include the local thermal strains which are integrated in time:

aa

1
n+=
et =en o (T 2)[ T -T"]

cc

gM:%+%Uﬁ{ﬂﬂJﬂ

1
n+=
et =gl +o (T 2)[TM-T"]

(19.23.4)

(19.23.5)

(19.23.6)

(19.23.7)

(19.23.8)

After computing §; we use Equation (16.32) to obtain the Cauchy stress. This model will

predict realistic behavior for finite displacement and rotations as long as the strains are small.

For shell elements, the stresses are integrated in time and are updated in the corotational
coordinate system. In this procedure the local material axes are assumed to remain orthogonal in
the deformed configuration. This assumption is valid if the strains remain small.
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Material Model 24: Piecewise Linear Isotropic Plasticity

This plasticity treatment in this model is quite similar to Model 10, but unlike 10, it
includes strain rate effects and does not use an equation of state. Deviatoric stresses are
determined that satisfy the yield function

2

1 o
0=255 <0 (19.10.1)

where
o,=B o+ fu( k)] (19.24.1)

where the hardening function f, (gef‘f’) can be specified in tabular form as an option. Otherwise,
linear hardening of the form

fo(ek )=E, (k) (19.10.3)

is assumed where E; and g are given in Equations (19.3.6) and (19.3.7), respectively. The

parameter [ accounts for strain rate effects. For complete generality a table defining the yield
stress versus plastic strain may be defined for various levels of effective strain rate.

In the implementation of this material model, the deviatoric stresses are updated
elastically (see material model 1), the yield function is checked, and if it is satisfied the
deviatoric stresses are accepted. If it is not, an increment in plastic strain is computed:

3 & e }é
35 S| —0o
Al = (iss) -0, (19.10.4)
3G+E,

is the shear modulus and E is the current plastic hardening modulus. The trial deviatoric stress
state s; is scaled back:
o

n+l _ y
Sk >k

S — S (19.10.5)
(3ss)

For shell elements, the above equations apply, but with the addition of an iterative loop to solve
for the normal strain increment, such that the stress component normal to the mid surface of the
shell element approaches zero.

Three options to account for strain rate effects are possible:

I.  Strain rate may be accounted for using the Cowper-Symonds model which scales the
yield stress with the factor
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S\
B =1+(£j (19.24.2)

where £ is the strain rate.

Il.  For complete generality a load curve, defining £, which scales the yield stress may be
input instead. In this curve the scale factor versus strain rate is defined.

1. If different stress versus strain curves can be provided for various strain rates, the
option using the reference to a table definition can be used. See Figure 19.24.1.

A fully viscoplastic formulation is optional which incorporates the different options above within
the yield surface. An additional cost is incurred over the simple scaling but the improvement is
results can be dramatic.

If a table ID is specified a curve ID is given for each strain rate, see Section 23. Intermediate
values are found by interpolating between curves. Effective plastic strain versus yield stress is
expected. If the strain rate values fall out of range, extrapolation is not used; rather, either the
first or last curve determines the yield stress depending on whether the rate is low or high,
respectively.

Material Model 25: Kinematic Hardening Cap Model

The implementation of an extended two invariant cap model, suggested by Stojko [1990],
is based on the formulations of Simo, et al. [1988, 1990] and Sandler and Rubin [1979]. In this
model, the two invariant cap theory is extended to include nonlinear kinematic hardening as
suggested by Isenberg, Vaughn, and Sandler [1978]. A brief discussion of the extended cap
model and its parameters is given below.

The cap model is formulated in terms of the invariants of the stress tensor. The square
root of the second invariant of the deviatoric stress tensor, ,/J,, is found from the deviatoric

stresses sas
/1
Voo = ESJ' Si

and is the objective scalar measure of the distortional or shearing stress. The first invariant of the
stress, J, , is the trace of the stress tensor.
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\
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Eeff
Figure 19.25.1. Rate effects may be accounted for by defining a table of curves.

N
A JHp = Fe
/ /VJ2D:FC
f
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J
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Figure 19.25.2. The yield surface of the two-invariant cap model in pressure /J,, —J, space

Surface f, is the failure envelope, f, is the cap surface, and f, is the tension
cutoff.
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The cap model consists of three surfaces in /J,, —J, space, as shown in Figure 19.25.1.
First, there is a failure envelope surface, denoted f, in the figure. The functional form of f, is

f, =350 —min(F(3), Triees)

where F, is given by

F.(J,)=a—-yexp(-AJ,)+6J,

e

and T, =|X (k,)-L(x,).

n

This failure envelope surface is fixed in /J,, —J, space, and

therefore does not harden unless kinematic hardening is present. Next, there is a cap surface,
denoted f, in the figure, with f, given by

fz = ‘]20 _Fc(JuK')

where F, is defined by

1 2 2
F(3ur) =2 [X(0)-L()] ~[L-L(x)]"
X (x) is the intersection of the cap surface with the J, axis
X(x)=x+RF, (x),

and L(x) is defined by

L 3 xkifx>0
(x)= 0ifx<0

The hardening parameter x is related to the plastic volume change & through the hardening
law

&P :W{l—exp[—D(X (x)- Xo)}}

Geometrically, x is seen in the figure as the J, coordinate of the intersection of the cap surface
and the failure surface. Finally, there is the tension cutoff surface, denoted f, in the figure. The
function f; is given by

f,+T -3,
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where T is the input material parameter which specifies the maximum hydrostatic tension
sustainable by the material. The elastic domain in /J,, —J, space is then bounded by the

failure envelope surface above, the tension cutoff surface on the left, and the cap surface on the
right.
An additive decomposition of the strain into elastic and plastic parts is assumed:

e=e+e&",

where £° is the elastic strain and &£” is the plastic strain. Stress is found from the elastic strain
using Hooke’s law,

O'=C(€—8P),

where o is the stress and C is the elastic constitutive tensor.
The yield condition may be written

and the plastic consistency condition requires that

A f, =0
k=1,2,3

A =0

where A is the plastic consistency parameter for surface k. If f <0, then 4 =0 and the
response is elastic. If f, > 0, then surface k is active and A is found from the requirement that
f,=0.

Associated plastic flow is assumed, so using Koiter’s flow rule the plastic strain rate is
given as the sum of contribution from all of the active surfaces,

One of the major advantages of the cap model over other classical pressure-dependent
plasticity models is the ability to control the amount of dilatency produced under shear loading.
Dilatency is produced under shear loading as a result of the yield surface having a positive slope

in \/J,, —J; space, so the assumption of plastic flow in the direction normal to the yield surface
produces a plastic strain rate vector that has a component in the volumetric (hydrostatic)
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direction (see Figure 19.25.1). In models such as the Drucker-Prager and Mohr-Coulomb, this
dilatency continues as long as shear loads are applied, and in many cases produces far more
dilatency than is experimentally observed in material tests. In the cap model, when the failure
surface is active, dilatency is produced just as with the Drucker-Prager and Mohr-Columb
models. However, the hardening law permits the cap surface to contract until the cap intersects
the failure envelope at the stress point, and the cap remains at that point. The local normal to the
yield surface is now vertical, and therefore the normality rule assures that no further plastic
volumetric strain (dilatency) is created. Adjustment of the parameters that control the rate of cap
contractions permits experimentally observed amounts of dilatency to be incorporated into the
cap model, thus producing a constitutive law which better represents the physics to be modeled.

Another advantage of the cap model over other models such as the Drucker-Prager and
Mohr-Coulomb is the ability to model plastic compaction. In these models all purely volumetric
response is elastic. In the cap model, volumetric response is elastic until the stress point hits the
cap surface. Therefore, plastic volumetric strain (compaction) is generated at a rate controlled by
the hardening law. Thus, in addition to controlling the amount of dilatency, the introduction of
the cap surface adds another experimentally observed response characteristic of geological
material into the model.

The inclusion of kinematic hardening results in hysteretic energy dissipation under cyclic
loading conditions. Following the approach of Isenberg, et al., [1978] a nonlinear kinematic
hardening law is used for the failure envelope surface when nonzero values of and N are
specified. In this case, the failure envelope surface is replaced by a family of yield surfaces
bounded by an initial yield surface and a limiting failure envelope surface. Thus, the shape of
the yield surfaces described above remains unchanged, but they may translate in a plane
orthogonal to the J axis.

Translation of the yield surfaces is permitted through the introduction of a “back stress”
tensor, . The formulation including kinematic hardening is obtained by replacing the stress
g with the translated stress tensor 7=0 —« in all of the above equation. The history tensor «

is assumed deviatoric, and therefore has only 5 unique components. The evolution of the back
stress tensor is governed by the nonlinear hardening law

a=TF (o,0) &P

where T is a constant, F is a scalar function of o and « and &” is the rate of deviator plastic
strain. The constant may be estimated from the slope of the shear stress - plastic shear strain
curve at low levels of shear stress.

The function F is defined as

_ (c-a)ea
F= max(o,l—m]

where N is a constant defining the size of the yield surface. The value of N may be interpreted
as the radial distant between the outside of the initial yield surface and the inside of the limit
surface. In order for the limit surface of the kinematic hardening cap model to correspond with

19.51



Material Models LS-DYNA Theory Manual

the failure envelope surface of the standard cap model, the scalar parameter a must be replaced
o — N in the definition F,.

The cap model contains a number of parameters which must be chosen to represent a
particular material, and are generally based on experimental data. The parameters «, 3, 8, and
y are usually evaluated by fitting a curve through failure data taken from a set of triaxial
compression tests. The parameters W, D, and X, define the cap hardening law. The value W
represents the void fraction of the uncompressed sample and D governs the slope of the initial
loading curve in hydrostatic compression. The value of R s the ration of major to minor axes of
the quarter ellipse defining the cap surface. Additional details and guidelines for fitting the cap
model to experimental data are found in [Chen and Baladi, 1985].

Material Model 26: Crushable Foam

This orthotropic material model does the stress update in the local material system
denoted by the subscripts, a, b, and c. The material model requires the following input
parameters:

* E, Young’s modulus for the fully compacted material;
* v, Poisson’s ratio for the compacted material;
* o0, Yyield stress for fully compacted honeycomb;

* LCA, load curve number for sigma-aa versus either relative volume or volumetric
strain (see Figure 19.26.1.);

» LCB, load curve number for sigma-bb versus either relative volume or volumetric
strain (default: LCB = LCA);

» LCC, the load curve number for sigma-cc versus either relative volume or
volumetric strain (default: LCC = LCA);

* LCS, the load curve number for shear stress versus either relative volume or
volumetric strain (default LCS = LCA);

.V , relative volume at which the honeycomb is fully compacted,

. EaaU, elastic modulus in the uncompressed configuration;

. EbbU, elastic modulus in the uncompressed configuration;
E

. cau - elastic modulus in the uncompressed configuration;
. Cu , elastic shear modulus in the uncompressed configuration;
° GbCU

, elastic shear modulus in the uncompressed configuration;

. GcaU, elastic shear modulus in the uncompressed configuration;

» LCAB, load curve number for sigma-ab versus either relative volume or volumetric
strain (default: LCAB =LCYS);

» LCBC, load curve number for sigma-bc versus either relative volume or volumetric
strain default: LCBC = LCS);

» LCCA, load curve number for sigma-ca versus either relative volume or volumetric
strain (default: LCCA = LCS);

* LCSR, optional load curve number for strain rate effects.
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The behavior before compaction is orthotropic where the components of the stress tensor
are uncoupled, i.e., an a component of strain will generate resistance in the local a direction with
no coupling to the local b and c directions. The elastic moduli vary linearly with the relative
volume from their initial values to the fully compacted values:

Eaa: Eaau+ﬂ(E_Eaau)

Eyp = By + B(E-E) (19.26.1)

Ecc = Eccu +ﬂ(E_ Eccu)
Gy = Gy, +ﬂ(G_Gabu)

Gbc :Gbcu+ﬂ(G_Gbcu)
Gca :Gcau+ﬂ(G_Gcau)

where

B= max[min (e ,1),0} (19.26.2)

and G is the elastic shear modulus for the fully compacted honeycomb material

G= E
21+v)

(19.26.3)

The relative volume V is defined as the ratio of the current volume over the initial volume;
typically, V =1 at the beginning of a calculation. The relative volume, V.., is the minimum
value reached during the calculation.

The load curves define the magnitude of the average stress as the material changes
density (relative volume). Each curve related to this model must have the same number of points
and the same abscissa values. There are two ways to define these curves: as a function of
relative volume V, or as a function of volumetric strain defined as:

g =1-V (19.26.4)

In the former, the first value in the curve should correspond to a value of relative volume slightly
less than the fully compacted value. In the latter, the first value in the curve should be less than
or equal to zero corresponding to tension and should increase to full compaction. When
defining the curves, care should be taken that the extrapolated values do not lead to
negative yield stresses.
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At the beginning of the stress update we transform each element’s stresses and strain
rates into the local element coordinate system. For the uncompacted material, the trial stress
components are updated using the elastic interpolated moduli according to:

n +ltria|

o =0, +E A€,
O'Eg "= O-lr;b + By e,
n+101a n
cc » = GCC + ECCAgCC (19.26.5)
ol = oh +2G,Ae,
ot =6 +2G, 4e,
ol =6 +2G _AJe, =1

Then we independently check each component of the updated stresses to ensure that they do not
exceed the permissible values determined from the load curves, e.g., if

n+llr|a]

> }”O-lj (\/min)
then

n_*_llrial
Ao

n +1tria|
ij

o7 = 0, (V) (19.26.6)

The parameter A is either unity or a value taken from the load curve number, LCSR, that defines
Aas a function of strain rate. Strain rate is defined here as the Euclidean norm of the deviatoric
strain rate tensor.

For fully compacted material we assume that the material behavior is elastic-perfectly
plastic and updated the stress components according to

rial n devm%
s =5 +2G4e; (19.26.7)

where the deviatoric strain increment is defined as
Agf = Agy — A S (19.26.8)

We next check to see if the yield stress for the fully compacted material is exceeded by
comparing

Slt;a] _ (%S’(jrial S1tjrial )}/2 (19.26.9)
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the effective trial stress, to the yield stress o, . If the effective trial stress exceeds the yield
stress, we simply scale back the stress components to the yield surface:

N+ % ri
S| 1= s‘”z“ S| a (19.26.10)
eff
We can now update the pressure using the elastic bulk modulus, K:
pn+l — pn _ KA&'I::%
K E (19.26.11)
C3(1-2v)
and obtain the final value for the Cauchy stress
0'{].”1 = S{,—‘“ - p”+15”. (19.26.12)

After completing the stress update, we transform the stresses back to the global

configuration.
A

Gij

Unloading and
reloading path

]

- >
0 Strain —&;;
Curve extends into negative strain quad- Unloading is based on the interpolated
rant since LS-DYNA will extrapolate Young’s moduli which must provide an
using the two end points. It is important unloading tangent that exceeds the
that the extrapolation does not extend into loading tangent.

the negative stress region.

Figure 19.26.1. Stress quantity versus volumetric strain. Note that the “yield stress” at a
volumetric strain of zero is nonzero. In the load curve definition, the “time”
value is the volumetric strain and the “function” value is the yield stress.
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Material Model 27: Incompressible Mooney-Rivlin Rubber
The Mooney-Rivlin material model is based on a strain energy function, W, as follows

W=A(l,-3)+ B(|2—3)+C(|i2—1)+ D(I,-1)2 (19.27.1)

3
A and B are user defined constants, whereas C* and D are related to A and B as follows

C =%A+ B (19.27.2)

_ A(5v-2)+B(11v-5)
- 2(1-2v)

D

(19.27.3)

The derivation of the constants C and D is straightforward [Feng, 1993] and is included
here since we were unable to locate it in the literature. The principal components of Cauchy

stress, o, are given by [Ogden, 1984]

W
Jo =4 — 19.27.4
O-I 1 8/11 ( )
For uniform dilation
A=A==A (19.27.5)

thus the pressure, p, is obtained (please note the sign convention),

A? M+ 24 Mme Mj (19.27.6)
al, al, al,

2
p=0,=0,=0; :?(
The relative volume, V , can be defined in terms of the stretches as:

s _ hewvolume
old volume

(19.27.7)

For small volumetric deformations the bulk modulus, K, can be defined as the ratio of the
pressure over the volumetric strain as the relative volume approaches unity:

K = |im(ij (19.27.8)
vl 'V =1

* Please observe the difference between the constant, C, and the right Cauchy Green tensor C, which will be denoted
either by boldface tensorial notation or through its tensorial components, C;; throughout the report.
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The partial derivatives of W lead to:

AW
ETH

=A

MW _g
dl,
W _ i +2D(l,-1)=-2CA™** +2D(2°-1)
3

(19.27.9)
D :%{MZ +2A'B+A° [—zc/r“‘ +2D(2° ‘1ﬂ}

=%{M2 +24'B-2CA™* +2D(4” - 2°)}

In the limit as the stretch ratio approaches unity, the pressure must approach zero:

limp=0 (19.27.10)

A1

Therefore, A+2B-2C =0 and

~.C=05A+B (19.27.11)

To solve for D we note that:

‘. ”m( o j= o ;{MZ +2A4'B-2CA ™ +2D(4” - 2°)}

Mliy—7)='Mm FENS) (19.27.12)

lim A4*+24'B-2CA ™ +2D (4% -1°)
A1 A=

lim 2A1+84°B+24CA*+2D (124" -64°)
A—1 64° —342

:§(2A+88+ 24C +12D) :%(14A+328+12D)

We therefore obtain:
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2G(1+ 2(A+B)(1+
14A+32B 412D = 3K =3[ 2+ | _2(A*B)(I+v)  jg 50 14
2 2| 3(1-2v) (1-2v)
A(5v-2)+B(1lv-5
p - AlBv-2)+B(l1v-5) (19.27.14)
2(1-2v)
The invariants 1;-13 are related to the right Cauchy-Green tensor C as
I, =GC; (19.27.15)
1 1
l, ZEC”Z —EC”Cij (19.27.16)
|, =det(C;) (19.27.17)

The second Piola-Kirchhoff stress tensor, S, is found by taking the partial derivative of
the strain energy function with respect to the Green-Lagrange strain tensor, E.

S.=a—W:2M=2 Aall +B£+ 2D(I3—1)—£ ﬂ (19.27.18)
1T, ac, oc,  aC, 12 ]ac,

The derivatives of the invariants ;-5 are

al,
=0
oc,
M 15 -C (19.27.19)
aqj ij ij
al )
8C3 =1.C)’

Inserting Equation (19.27.19) into Equation (19.27.18) yields the following expression
for the second Piola-Kirchhoff stress:

1 §
S, =2A5, +2B(1,6, —cij)—4cl—2c:,jl+4D(|3 )| Kon (19.27.20)
3

Equation (19.27.20) can be transformed into the Cauchy stress by using the push forward
operation
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o, =%Fikad F, (19.27.21)

where J =det(F;).

19.27.1 StressUpdatefor Shell Elements

As a basis for discussing the algorithmic tangent stiffness for shell elements in Section
19.27.3, the corresponding stress update as it is done in LS-DYNA is shortly recapitulated in this
section. When dealing with shell elements, the stress (as well as constitutive matrix) is typically
evaluated in corotational coordinates after which it is transformed back to the standard basis
according to

oy =R¢R; 0y

Here R; is the rotation matrix containing the corotational basis vectors. The so-called

corotated stress &ij is evaluated using Equation 19.27.21 with the exception that the deformation
gradient is expressed in the corotational coordinates, i.e.,

G, = % F.SF, (19.27.22)

where S, is evaluated using Equation (19.27.20). The corotated deformation gradient is
incrementally updated with the aid of a time increment At, the corotated velocity gradient I:ij ,

and the angular velocity SAEU with which the embedded coordinate system is rotating.
Ifij = (S + At|:ik - Atfzik)'fkj (19.27.23)

The primary reason for taking a corotational approach is to facilitate the maintenance of a
vanishing normal stress through the thickness of the shell, something that is achieved by

adjusting the corresponding component of the corotated velocity gradient L., accordingly. The

problem can be stated as to determine I:33 such that when updating the deformation gradient

through Equation (19.27.23) and subsequently the stress through Equation (19.27.22), &, =0.
To this end, it is assumed that

A

Ly = (L, +L,,),

for some parameter ¢ that is determined in the following three step procedure. In the first two
steps, & =0 and a =-1, respectively, resulting in two trial normal stresses ¢ and " .
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Then it is assumed that the actual normal stress depends linearly on «, meaning that the latter
can be determined from

_ () _ (0) (0) (-1
O0=03 =0y +a(0z —0g").

In LS-DYNA, « is given by

&ég) ~ (-1 ~(0) 4

Ay A0S0
a={go_go Mow —0x 2107
33 33

-1, otherwise

and the stresses are determined from this value of « . Finally, to make sure that the normal stress
through the thickness vanishes, it is set to 0 (zero) before exiting the stress update routine.

19.27.2 Derivation of the Continuum Tangent Stiffness

This section will describe the derivation of the continuum tangent stiffness for the
Mooney-Rivlin material. For solid elements, the continuum tangent stiffness is chosen in favor
of an algorithmic (consistent) tangential modulus as the constitutive equation at hand is smooth
and a consistent tangent modulus is not required for good convergence properties. For shell
elements however, this stiffness must ideally be modified in order to account for the zero normal
stress condition. This modification, and its consequences, are discussed in the next section.
The continuum tangent modulus in the reference configuration is per definition,

e =08 95 (19.27.24)
¥ 0E, aC,

Splitting up the differentiation of Equation (19.27.20) we get

2(16,-C,) . . 1
#:é‘wé‘ij_g(é‘iké‘jl-i_é‘ilé‘jk)
12 2 s 1o A
e G g (Gie iG99
a(1,(1;-1C;*

PR | P P
J ) = |3(2|3 _l)CkIlCijl - 3('3 _l)(ijlcnl + Clj lcikl)
aC, 2

Since LS-DYNA needs the tangential modulus for the Cauchy stress, it is a good idea to
transform the terms in Equation (19.27.25) before summing them up. The push forward
operation for the fourth-order tensor Ejj™ is
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Ei¢ = i F.F FFuEis (19.27.26)

ia’ jb

Since the right Cauchy-Green tensor is C=F'F and the left Cauchy-Green tensor is b=FF',
and the determinant and trace of the both stretches are equal, the transformation is in practice
carried out by interchanging

Ci'—>d, g — b,

The end result is then

JEi-jrlg :4B|:h<lhj _%(hkbjl +h| ]k):| [45 5 +(5k15|| +5|15|m)J

8D|3[(2|3—1)5.5 —;(I ~1)(8, 5,,+5,,5,k)} (19.27.27)

1

19.27.3 TheAlgorithmic Tangent Stiffnessfor Shell Elements

The corotated tangent stiffness matrix is given by Equation (19.27.27) with the exception
that the left Cauchy-Green tensor and deformation gradient are given in corotational coordinates,
i.e.,

JE,JTKCI—4B[qdq ——(56 k}IBjk)} ‘: 48,84 +(8,8,+6,6,) |+

8DI{(2I3 ~1)6,3, —%(|3—1)(5k15iI +5”5ik)} (19.27.28)

1

Using this exact expression for the tangent stiffness matrix in the context of shell
elements is not adequate since it does not take into account that the normal stress is zero and it
must be modified appropriately. To this end, we assume that the tangent moduli in Equation

(19.27.28) relates the corotated rate-of-deformation tensor 6” to the corotated rate of stress &ij ,
6, =END, (19.27.29)

Even though this is not completely true, we believe that attempting a more thorough
treatment would hardly be worth the effort. The objective can now be stated as to find a

modified tangent stiffness matrix éi}kc,a'g such that

5 — = E;c"Dy (19.27.30)

'J
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where &fj"g is the stress as it is evaluated in LS-DYNA. The stress update, described in Section

19.27.1, is performed in a rather ad hoc way which probably makes the stated objective
unachievable. Still we attempt to extract relevant information from it that enables us to come
somewhat close.

An example of a modification of this tangent moduli is due to Hughes and Liu [1981] and
given by

ZTc TC
Eij33 Esau

“Tcalg _ ~TC
E = EijkI ——
ETC
3333

ijki

This matrix is derived by eliminating the thickness strain [533 from the equation &, =0

in Equation (19.27.30) as an unknown. This modification is unfortunately not consistent with
how the stresses are updated in LS-DYNA. When consulting Section 19.27.1, it is suggested that

D,, instead can be eliminated from
D,, = a(D,, + D,,) (19.27.31)

using the o determined from the stress update. Unfortunately, by the time when the tangent
stiffness matrix is calculated, the exact value of « is not known. From experimental
observations however, we have found that « is seldom far from being equal to —1. The fact
that o =—1 represents incompressibility strengthen this hypothesis. This leads to a modified

tangent stiffness éi},ﬁfa'g that is equal to é”Tlﬁf except for the following modifications,

=TCal =TC =TC =TC =TC
Eiijjag = Kjj — Eizs — 3 t Bz (19.27.32)
“TCalg _ [~TCalg __ 0 i=i R

si — Sjsz WU J

To preclude the obvious singularity, a small positive value is assigned to EJ5°,

Z“TCalg _ 14 (| £ TCalg = TCalg
E3333 =10 ( 111 ""‘Ezzzz :

As with the Hughes-Liu modification, this modification preserves symmetry and positive
definiteness of the tangent moduli, which together with the stress update “consistency” makes it
intuitively attractive.

Material Model 28: Resultant Plasticity

This plasticity model, based on resultants as illustrated in Figure 19.29.1, is very cost
effective but not as accurate as through-thickness integration. This model is available only with
the C° triangular, Belytschko-Tsay shell, and the Belytschko beam element since these
elements, unlike the Hughes-Liu elements, lend themselves very cleanly to a resultant
formulation.

19.62



LS-DYNA Theory Manual Material M odels

In applying this model to shell elements the resultants are updated incrementally using
the midplane strains €™ and curvatures «:

An=AtCe" (19.28.1)

3

Am:Atr—ZCK (19.28.2)

where the plane stress constitutive matrix is given in terms of Young’s Modulus E and
Poisson’s ratio v as:

2 2

M=, —m,m, +ng, +3mj, (19.28.3)
Defining
A=n; —n,n, +n; +3n; (19.28.4)
m=m, —m,m_ +n, +3m, (19.28.5)
mn=mn, -3mn, —3n,m +mn, +3mn, (19.28.6)
the Ilyushin yield function becomes
f(m, n):ﬁ+4|mﬁ|+16m< n:=h’c?’ (19.28.7)

In our implementation we update the resultants elastically and check to see if the yield condition
is violated:

f(mn) > n (19.28.8)

If so, the resultants are scaled by the factor «:

o= ! 19.28.9
f(mn) ( )

We update the yield stress incrementally:
o)t =0) +E"Ae] g (19.28.10)
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where EP is the plastic hardening modulus which in incremental plastic strain is approximated
by

f(mn)-n
A o =L 19.28.11
plastic h(3G+Ep) ( )
Kennedy, et. al., report that this model predicts results that may be too stiff; users of this model

should proceed cautiously.
In applying this material model to the Belytschko beam, the flow rule changes to

£ 4m§ mﬁ 2 2
f( ) f 3| 3| <n =AC (19.28.12)

have been updated elastically according to Equations (4.16)-(4.18). The yield condition is
checked [Equation (19.28.8)], and if it is violated, the resultants are scaled as described above.

This model is frequently applied to beams with non-rectangular cross sections. The
accuracy of the results obtained should be viewed with some healthy suspicion. No work
hardening is available with this model.

Material Model 29: FORCE LIMITED Resultant Formulation

This material model is available for the Belytschko beam element only. Plastic hinges
form at the ends of the beam when the moment reaches the plastic moment. The moment-
versus-rotation relationship is specified by the user in the form of a load curve and scale factor.
The point pairs of the load curve are (plastic rotation in radians, plastic moment). Both
quantities should be positive for all points, with the first point pair being (zero, initial plastic
moment). Within this constraint any form of characteristic may be used including flat or falling
curves. Different load curves and scale factors may be specified at each node and about each of
the local sand t axes.

Membrane Oy

h
[ n, = J‘i o0,d{ =ho,
2

Bending oy

1

h h2
m, = J‘zg()'y{dé’ :TO-V

A

Figure 19.29.1. Full section yield using resultant plasticity.
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Axial collapse occurs when the compressive axial load reaches the collapse load. The
collapse load-versus-collapse deflection is specified in the form of a load curve. The points of
the load curve are (true strain, collapse force). Both quantities should be entered as positive for
all points, and will be interpreted as compressive i.e., collapse does not occur in tension. The
first point should be the pair (zero, initial collapse load).

The collapse load may vary with end moment and with deflection. In this case, several
load-deflection curves are defined, each corresponding to a different end moment. Each load
curve should have the same number of point pairs and the same deflection values. The end
moment is defined as the average of the absolute moments at each end of the beam, and is
always positive.

It is not possible to make the plastic moment vary with axial load.

[

i

force

displacement

Figure 19.29.2. The force magnitude is limited by the applied end moment. For an intermediate
value of the end moment, LS-DYNA interpolates between the curves to
determine the allowable force.

A co-rotational technique and moment-curvature relations are used to compute the
internal forces. The co-rotational technique is treated in Section 4 in and will not be treated here
as we will focus solely on the internal force update and computing the tangent stiffness. For this
we use the notation
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E = Young's modulus

G = Shear modulus

A= Cross sectional area

A, = Effectivearea in shear

| " = Reference length of beam

| ™ = Current length of beam

I, = Second moment of inertia about y

| ,, = Second moment of inertia about z

J = Polar moment of inertia

e, =ith local base vector in the current configuration

y, = nodal vector in y direction at node I in the current configuration
z, =nodal vector i z direction at node I in the current configuration

We emphasize that the local y and z base vectors in the reference configuration always
coincide with the corresponding nodal vectors. The nodal vectors in the current configuration are
updated using the Hughes-Winget formula while the base vectors are computed from the current
geometry of the element and the current nodal vectors.

19.29.1 Internal Forces

Elastic Update
In the local system for a beam connected by nodes | and J, the axial force is updated as
fe=f"+KIS (19.29.1)
where
K = 'IEA (19.29.2)
o=1" =", (19.29.3)
The torsional moment is updated as
m' =m" + K6, (19.29.4)
where
K = CIEJ (19.29.5)
1
o, :Eel (Y, xy; +2z,x2,). (19.29.6)
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Material Models

The bending moments are updated as

el n el
my =my+AT0, (19.29.7)
m¢ =m? +A%0, (19.29.8)

where
4+ 2—
A= 1 El., (4. 4 (19.29.9)
1rg. 1" (2-9, 4+9,

9. = 128, (19.29.10)

GAI""
0) =—e;(y, xz, y,xz,) (19.29.11)
0; =e§(y| XZ, Y, XZJ)' (19.29.12)

In the following we refer to A¢ as the (elastic) moment-rotation matrix.

Plastic Correction

After the elastic update the state of force is checked for yielding as follows. As a
preliminary note we emphasize that whenever yielding does not occur the elastic stiffnesses and
forces are taken as the new stiffnesses and forces.

The yield moments in direction i at node | as functions of plastic rotations are denoted
my (6;) . This function is given by the user but also depends on whether a plastic hinge has been

created. The theory for plastic hinges is given in the LS-DYNA Keyword User’s Manual
[Hallquist 2003] and is not treated here. Whenever the elastic moment exceeds the plastic
moment, the plastic rotations are updated as

O™ =67 + - . (19.29.13)
max(0.001, A7, + 32:'3)
and the moment is reduced to the yield moment
my = my (67 ")sgn(my) . (19.29.14)

The corresponding diagonal component in the moment-rotation matrix is reduced as
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n+ Ad
AL = A, - ) ) (19.29.15)
max(0.001, A%, +£F',)

where « <1 is a parameter chosen such that the moment-rotation matrix remains positive
definite.

The yield moment in torsion is given by m'(6") and is provided by the user. If the
elastic torsional moment exceeds this value, the plastic torsional rotation is updated as

dl Y
etP(n+1) :HIP(n) + ‘m[ ‘ m ) y (192916)
max(0.001, K& + m‘P
26,
and the moment is reduced to the yield moment
m™ =m’ (67" )sgn(m?). (19.29.17)
The torsional stiffness is modified as
Ke|
KM =Ki(l-a——) (19.29.18)
o, OM
K +—5
06,

where again « <1 is chosen so that the stiffness is positive.
Axial collapse is modeled by limiting the axial force by f.' (&, m), i.e., a function of the

axial strains and the magnitude of bending moments. If the axial elastic force exceeds this value
it is reduced to yield

fr = £ (™, m")sgn(f) (19.29.19)
and the axial stiffness is given by

Y
I, ). (19.29.20)

K™ =max(0.05K¢,
o€

We neglect the influence of change in bending moments when computing this parameter.
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Damping
Damping is introduced by adding a viscous term to the internal force on the form

o

6,
f = Dg ' (19.29.21)

dat| o,

0Z

K d
K e

D= ! Al (19.29.22)

where y is a damping parameter.

Transformation
The internal force vector in the global system is obtained through the transformation

fo = of (19.29.23)
where
- 0 —e/I™ —e /1™ e /I™ e /1™
0 - 0 0
S= 5% L5 | (19.29.24)
e 0 e/I™ e /1™ —e, /I"™ —e, /1™
0 g 0 e, 0 e,
fn+l
rr?[n-%—l
fre=l (19.29.25)
my
mn+l

19.29.2 Tangent Stiffness

Derivation
The tangent stiffness is derived from taking the variation of the internal force

St = 5™ + Sof (19.29.26)

which can be written
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ST = K 98U + K ™5y (19.29.27)
where
su=(x] sol o o). (19.29.28)

There are two contributions to the tangent stiffness, one geometrical and one material
contribution. The geometrical contribution is given (approximately) by

1

K® =R(@f" ®1)W —WTfl"“L (19.29.29)

where

R, 0 R,/I™ RJ/I™ -R,/I™ —R,/I™

R -R -R
r=| © ! 2 0 ) 3 0 .| (19.29.30)
R, 0 -R,/I™ —R/I™ R,/I™ R,/I™
0 -R, 0 -R, 0 -R,
W=(-R,/I"™ ee /2 R,/™ eel/2) (19.29.31)
0O 0 -e -e e ¢
00 O 0 0 0
T= (19.29.32)
00 e e -e -¢
00 O 0 0 0

L=(-¢f 0 & 0 (19.29.33)
and | isthe 3 by 3 identity matrix. We use ® as the outer matrix product and define
Rv=e xv. (19.29.34)
The material contribution can be written as

K™ =SKST (19.29.35)

where
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n+l
K a

Kn+1
t 1 +1p. (19.29.36)
A At

n+l
A z

Material Model 30: Closed-Form Update Shell Plasticity

This section presents the mathematical details of the shape memory alloy material in LS-
DYNA. The description closely follows the one of Auricchio and Taylor [1997] with appropriate
modifications for this particular implementation.

19.30.1 Mathematical Description of the Material M odel
The Kirchhoff stress T in the shape memory alloy can be written

T=pi+t (19.30.1)
where i is the second order identity tensor and

p=K(@-3c.¢,) (19.30.2)
t=2G(e-¢.e.n) .
Here K and G are bulk and shear modulii, & and e are volumetric and shear
logarithmic strains and « and g, are constant material parameters. There is an option to define

the bulk and shear modulii as functions of the martensite fraction according to

K= KA +§S(KS - KA)
G= GA +§S(GS _GA)

in case the stiffness of the martensite differs from that of the austenite. Furthermore, the unit
vector n is defined as

n=e/(|e|+107), (19.30.3)
and a loading function is introduced as
F =2G|¢|+3aKo - B (19.30.4)
where
B =02G+9x°K)e, .

For the evolution of the martensite fraction & in the material, the following rule is adopted
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F-R¥*>0 -
£ <1 f
F-R*<0 -

£ >0 f

Here R, R/®, R and R are constant material parameters. The Cauchy stress is finally
obtained as

c=1/J (19.30.6)
where J is the Jacobian of the deformation.

19.30.2 Algorithmic Stress Update
For the stress update we assume that the martensite fraction &S and the value of the

loading function F" is known from time t, and the deformation gradient at time t_.,, F, is

known. We form the left Cauchy-Green tensor as B = FF' which is diagonalized to obtain the
principal values and directions A =diag(4) and Q. The volumetric and principal shear

logarithmic strains are given by

6 =1log(J)
g =log(4, /3'?)

where
J=444

is the total Jacobian of the deformation. Using Equation (19.30.4) with & = &2, a value F™ of
the loading function can be computed. The discrete counterpart of Equation (19.30.5) becomes

[ tial _ RSAS >0 = —,BAf _ min(max(F” RSAS) RAS)

ria n A > , =
F™ _F">0 = Aé:s:—(l_é:s_Aé:s) Ftrial_ﬁAé: — RS
&<l s

(19.30.7)

Fmal - RSSA <0 Ftrial _ﬁAé—' _ mir‘](maX(Fn RSA) RSSA)

ria n n > —
Frial _En -0 = Aé:S:(é:S +A‘§s) trial SA

F _IBAQES - Rf

e >0
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n+l

If none of the two conditions to the left are satisfied, set 0™ =&, F™ =F"™ and

compute the stress 6™ using Equations (19.30.1), (19.30.2), (19.30.3), (19.30.6) and & = &1,

When phase transformation occurs according to a condition to the left, the corresponding
equation to the right is solved for A¢;. If the bulk and shear modulii are constant this is an easy

task. Otherwise F"™ as well as B depends on this parameter and makes things a bit more
tricky. We have that

rial rial Es-E
Ft I:Fntl(1+ SE AAgs)

n

ﬁ=ﬁn(1+ESE‘EAA§S)

n

where Eg and E, are Young’s modulii for martensite and austenite, respectively. The subscript
n is introduced for constant quantities evaluated at time t,. To simplify the upcoming
expressions, these relations are written

Ftrial — Fntrial +AF trialAfS
ﬂ = ﬂn + Aﬂ Aé:s

Inserting these expressions into Equation (19.30.7) results in

f(AL) = ABL—EDALL + (R — Fis + (B, — AF™)(1-&0)) AL +

19.30.8
A-E)(Fis—F™)=0 ( )

and

F(ALS) = ABEIALS +(Fo— R +(8, - AF ™) &AL +

N . , (19.30.9)
gg(Fan_ Fntrlal) — 0

respectively, where we have for simplicity set

Fr = min(max(F", R*),R*)
Fo =min(max(F",R%),R%)

The solutions to these equations are approximated with two Newton iterations starting in
the point A&, =0. Now set &2 =min(,max(0,&EL +A&S)) and compute ¢™ and F™

according to Equations (19.30.1), (19.30.2), (19.30.3), (19.30.4), (19.30.6) and &, = EX.
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19.30.3 Tangent Stiffness Matrix

An algorithmic tangent stiffness matrix relating a change in true strain to a corresponding
change in Kirchhoff stress is derived in the following. Taking the variation of Equation (19.30.2)
results in

op = K(06 —3adé e, )+ K(6 -3 se,) (19.30.10)
ot =2G(de— e n—Ee,0n)+20G(e—E.n).

The variation of the unit vector in Equation (19.30.3) can be written

1
§n :W(I —n®n)5e,

where | is the fourth order identity tensor. For the variation of martensite fraction we introduce
the indicator parameters H > and H** that should give information of the probability of phase
transformation occurring in the next stress update. Set initially H** = H> =0 and change them
according to

Ftrial _RSAS >0
FtriaI_Fn>0 = HAS=1
S+ AL <1
F’[rial_RSSA<0
Frl _En <0} = H®=1
Ea+AES 20

using the quantities computed in the previous stress update. For the variation of the martensite
fraction we take variations of Equations (19.30.8) and (19.30.9) with

OF,"™ =2Gn : de+ 30K
which results in

o0& = y(2Gn : de+ 30K H09)

where

. A-EHH™ R seH™
RY i + (6, ~AF™)1-£3) " P&~ R + (8, —AF™)E
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As can be seen, we use the value of y obtained in the previous stress update since this is

easier to implement and will probably give a good indication of the current value of this
parameter.
The variation of the material parameters K and G results in

K =(Ks—K,)ds
0 = (G5 —GL)d5s

and, finally, using the identities

n:oe=n:oe
00 =i:6e
ot=iop+a

results in

ot= {2@ (1—£j 1 + K (1- 9K e, +3ay(Ks — K, )(0 -3, ) )i ®i +

Jef +107

2yG(Ks— K ) (0 -3 )i ®n+6yaK(Gs—G,)(|g| - £se )n @i +

{201 276G -6 o0t oo 00|

where 1% is the fourth order deviatoric identity tensor. In general this tangent is not symmetr