Modellierungsansätze für ausgewählte Aspekte der Umformsimulation

Wolfram Volk, Jae-Kun Kim

Lehrstuhl für Umformtechnik und Gießereiwesen, Technische Universität München

LS-Dyna Anwenderforum 2011| Stuttgart | 13.10.2011

Inhalte

- Einleitung
- Problemstellung
- Experimentelle Ermittlung lokaler Instabilität
- Simulative Ermittlung lokaler Instabilität
- Zusammenfassung

Einleitung

Problemstellung beim Einsatz neuer Materialgüten

4

Materialversagen Dehnratenabhängigkeit

Experimentelle Ermittlung lokaler Instabilität

Experimentelle Ermittlung lokaler Instabilität Testinstrument, -prinzip und -methode

Nakajima Testmaschine

- ISO Standard 12004
- Schnittlinienmethode
- Zeitabhängige Auswertemethode

Lokalisierung der Einschnürung

Prinzipskizze

Probe

Experimentelle Ermittlung lokaler Instabilität Schnittlinienmethode

Problematisch bei großem Instabilitätsbereich oder mehreren Einschnürzonen

Experimentelle Ermittlung lokaler Instabilität Zeitabhängige Auswertemethode

- Bisher: Identifikation der beginnenden Einschnürung mit subjektiver visueller Methode (per Auge)
- Deutliche Variation der Ergebnisse bei unterschiedlichen Anwendern (sogar bei identischen Proben)

Zeitliche Entwicklung von Ausdünnung und Ausdünnungsrate entlang Querschnitt

Zeitabhängige Auswertemethode Ausdünnungswerten

Zeitabhängige Auswertemethode Ausdünnungsraten

Zeitabhängige Auwertemethode Anwendungsbeispiele

Material mit einer positiven oder negativen Dehnratenempfindlichkeit

positiv

negativ

t=0,2 °

t **=** 0,1 s

Zeitabhängige Auswertemethode Grundlegender Algorithmus – Schritt I

• Identifikation lokaler Instabilität mittels zeitabhängiger Auswertemethode

uta

Zeitabhängige Auswertemethode Grundlegender Algorithmus – Schritt II

 Analyse zeitabhängigen Materialverhaltens der identifizierten Instabilitätszone

Zeitabhängige Auswertemethode Grundlegender Algorithmus – Schritt II

 Analyse zeitabhängigen Materialverhaltens der identifizierten Instabilitätszone

Qualitativ gleiches Verhalten bei allen Dehnungsverhältnissen

Zeitabhängige Auswertemethode Grundlegender Algorithmus – Schritt III

• Lineare Kurvenanpassung stabiler und instabiler Zone

Zeitabhängige Auswertemethode Grundlegender Algorithmus – Schritt IV

Bestimmung beginnender Instabilität und entsprechender Spannung

W. Volk, P. Hora.: New algorithm for a robust user-independent evaluation of beginning instability for the experimental FLC determination. *Int. J. Material Forming,* DOI:10, (2011), 1007/s12289-010-1012-9

Materialversagen Dehnratenabhängigkeit

Simulative Ermittlung lokaler Instabilität

Randbedingungen

- Material: HC180BH , 1 mm
- X-Verschiebung = 133 mm/s · t

Volk & Charvet, LS-Dyna Konferenz Salzburg 2009

strain FLC

Mit Dehnratenempfindlichkeit

Zeitabhängige Auswertemethode

Werkstoff: HC220YD 0,8 mm (Numisheet 2008 Benchmarkmaterial)

Auswirkung der Dehnratenempfindlichkeit

m: $\sigma = \sigma_{eq} (\dot{\phi} / \dot{\phi}_{eg})^{m}$, wobei $\dot{\phi}_{eq} = 0,004$.

Einfluss der Elementgröße

Einfluss der Elementgröße

- → Geringer Einfluss der Elementgröße auf den Einschnürbeginn
- → Deutlicher Abhängigkeit des post-kritischen Verhaltens von der Elementgröße

Einfluss der Elementorientierung

Einfluss der Elementorientierung

Keine Unterschiede in uniformen Formänderung → Startdehnungszustand für diffuse Einschnürung identisch Der Verlauf des Dickenabnahmegradienten nach der Einschnürung nicht identisch (bei 0° schneller)

→ Empfehlung für numerische Korrektur im Sinne "Akustik-Tensor"

Experimentelle und Simulative Ermittlung lokaler Instabilität Vergleich

m: $\sigma = \sigma_{eq} (\dot{\phi} / \dot{\phi}_{eq})^{m}$, wobei $\dot{\phi}_{eq} = 0,004$.

Experimentelle und Simulative Ermittlung lokaler Instabilität Modifikation simulativer Grenzformänderungskurve

Experimentelle und simulative Ermittlung lokaler Instabilität Anwendungsmöglichkeit

Zur Evaluierung von beliebigen nichtlinearen Dehnwegen

Material: HC420LAD

Experimentelle und simulative Ermittlung lokaler Instabilität Anwendungsmöglichkeit

Zur Evaluierung von beliebigen nichtlinearen Dehnwegen

Material: HC420LAD

Zusammenfassung

Institute of Metal Forming and Casting Prof. Dr.-Ing. W. Volk

Technische Universität München Walther-Meißner-Straße 4 85748 Garching

Telefon: +49 89 / 2 89 - 1 37 90 Telefax: +49 89 / 2 89 - 1 37 38

> wolfram.volk@utg.de www.utg.de

