Review of Solid Element Formulations in LS-DYNA

Properties, Limits, Advantages, Disadvantages

LS-DYNA Forum 2011 > Entwicklerforum Stuttgart, 12. Oktober 2011
tobias.erhart @ dynamore.de

Solid elements are three-dimensional finite elements that can model solid bodies and structures without any a priori geometric simplification.

- No geometric, constitutive and loading assumptions required.
- Boundary conditions treated more realistically (compared to shells or beams).
- FE mesh visually looks like the physical system.
but...
- Higher effort: mesh preparation, CPU time, post-processing, ...

- Expensive mesh refinement: Curse of dimensionality.
- Often poor performance for thin-walled structures (locking problems).

Motivation

Applications

- Foam structures
- Rubber components
- Cast iron parts
- Solid barriers
- Plastic parts
- Bulk forming
- Thick metal sheets
- Elastic tools
- Impact analysis
- ...

LS-DYNA User's manual: *SECTION_SOLID, parameter ELFORM

EQ. -2: fully integrated S / R solid intended for elements with poor aspect ratio, accurate formulation

EQ. -1: fully integrated S / R solid intended for elements with poor aspect ratio, efficient formulation
EQ. 1: constant stress solid element (default)
EQ. 2: fully integrated S/R solid
EQ. 3: fully integrated quadratic 8 node element with nodal rotations

EQ. 4: S / R quadratic tetrahedron element with nodal rotations
EQ. 10: 1 point tetrahedron
EQ. 13: 1 point nodal pressure tetrahedron
EQ. 15: 2 point pentahedron element
EQ. 16: 4 or 5 point 10-noded tetrahedron
EQ. 17: 10-noded composite tetrahedron
EQ. 115: 1 point pentahedron element with hourglass control

Hexahedra elements in LS-DYNA

ELFORM = 1

- underintegrated constant stress
- efficient and accurate
- even works for severe deformations
- needs hourglass stabilization: choice of hourglass formulation and values remains an issue

ELFORM = 2

- selective reduced integrated brick element (volumetric locking alleviated)
- no hourglass stabilization needed
- slower than ELFORM=1
- too stiff in many situations, especially for poor aspect ratios (shear locking)
- more unstable in large deformation applications

Hourglass control for ELFORM=1

*HOURGLASS: IHQ = 1... 5

- viscous form $(1,2,3)$ for higher velocities
- stiffness form $(4,5)$ for lower velocities
- exact volume integration recommended $(3,5)$

*HOURGLASS: IHQ = 6

- the QBI (Quintessential Bending Incompressible) hourglass control by Belytschko and Bindeman
- hourglass stiffness uses elastic constants
- recommended in most situations
- sometimes modified QM makes sense (watch hourglass energy)

*HOURGLASS: IHQ = 7/9
- similar to type 6, but less experience
- type 7 uses total deformation instead of updated
- type 9 should provide more accurate results for distorted meshes

Property of ELFORM=2

Shear locking

- pure bending modes trigger spurious shear energy
- getting worse for poor aspect ratios

- Alleviation possibility 1: under-integration \rightarrow ELFORM $=1$
- Alleviation possibility 2: enhanced strain formulations
modified Jacobian matrix
$\Rightarrow \varepsilon_{x x}=2 \xi_{y} / l_{x}, \varepsilon_{y y}=0, \gamma_{x y}=\ldots=\xi_{x}^{\prime} / l_{x}$
ELFORM =-1 $/-2$

Solid element types -1 and -2

NEW: ELFORM = -1 / -2

- Thomas Borrvall: "A heuristic attempt to reduce transverse shear locking in fully integrated hexahedra with poor aspect ratio", Salzburg 2009
- Modification of the Jacobian matrix: reduction of spurious stiffness without affecting the true physical behavior of the element

$$
\begin{aligned}
J_{i j}^{\text {orig }} & =\frac{\partial x_{i}}{\partial \xi_{j}}=x_{I i} \frac{1}{8}\left(\xi_{j}^{I}+\xi_{j k}^{I} \xi_{k}+\xi_{j l}^{I} \xi_{l}+\xi_{123}^{I} \xi_{k} \xi_{l}\right) \\
J_{i j}^{\mathrm{mod}} & =x_{I i} \frac{1}{8}\left(\xi_{j}^{I}+\xi_{j k}^{I} \xi_{k} \kappa_{j k}+\xi_{j l}^{I} \xi_{l} \kappa_{j l}+\xi_{123}^{I} \xi_{k} \kappa_{j k} \xi_{l} \kappa_{j l}\right)
\end{aligned}
$$

- Type -2: accurate formulation, but higher computational cost in explicit
- Type -1: efficient formulation
- CPU cost compared to type 2: ~1.2 (type -1), ~4 (type -2)

New hexahedra elements in LS-DYNA

ELFORM =-1

- identical with type 2, but accounted for poor aspect ratio on order to reduce shear locking
- „efficient formulation"
- sometimes hourglass tendencies

ELFORM = -2

- identical with type 2, but accounted for poor aspect ratio on order to reduce shear locking
- „accurate formulation"
- higher computational cost than type -1

Implicit elastic bending

- clamped plate of dimensions $10 \times 5 \times 1 \mathrm{~mm}^{3}$
- subjected to 1 Nm torque at the free end
- $\mathrm{E}=210 \mathrm{GPa}$
- analytical solution for end tip deflection: 0.57143 mm
- convergence study with aspect ratio 5:1 kept constant

Table 1 End tip deflection for different mesh discretizations and element types, error in parenthesis.

Discretization	Solid element type 2	Solid element type -2	Solid element type -1
$2 \times 1 \times 1$	$0.0564(90.1 \%)$	$0.6711(17.4 \%)$	$0.6751(18.1 \%)$
$4 \times 2 \times 2$	$0.1699(70.3 \%)$	$0.5466(4.3 \%)$	$0.5522(3.4 \%)$
$8 \times 4 \times 4$	$0.3469(39.3 \%)$	$0.5472(4.2 \%)$	$0.5500(3.8 \%)$
$16 \times 8 \times 8$	$0.4820(15.7 \%)$	$0.5516(3.5 \%)$	$0.5527(3.3 \%)$
$32 \times 16 \times 16$	$0.5340(6.6 \%)$	$0.5535(3.1 \%)$	$0.5540(3.1 \%)$

Plastic bending

- explicit plastic 3 point bending (prescribed motion)
- plate of dimensions $300 \times 60 \times 5 \mathrm{~mm}^{3}$
- *MAT_024 (aluminum)
- convergence study - aspect ratio 4:1 kept constant

Plastic bending

Results

- maximum energy (internal + hourglass)

Plastic bending

CPU times

- ELFORM = 1: 56 minutes
- ELFORM = 2: 116 minutes
- ELFORM = -1: 136 minutes
- ELFORM = -2: 542 minutes

ELFORM = 2
ELFORM = - 1
ELFORM = 1

ELFORM = - 2 not efficient, $E L F O R M=-1$ comparable to 2

shells

> solids
> type 1
> $\left(\mathrm{t}_{\mathrm{CPU}}=1.0\right)$
solids
type 2
$\left(t_{\text {CPU }}=5.5\right)$

> solids
> type -1
> $\left(\mathrm{t}_{\mathrm{cPU}}=5.2\right)$

> solids
> type -2
> $\left(\mathrm{t}_{\mathrm{CPU}}=8.3\right)$

Results

contact force

internal energy

Tetrahedra elements in LS-DYNA

ELFORM = 10

- 1 point constant stress
- volumetric locking - stiff behavior
- only applicable for foams with $v=0$ (not recommended in general)
- often used for transitions in meshes (ESORT=1)

ELFORM = 13

- 1 point constant stress with nodal pressure averaging
- alleviated volumetric locking
- better performance than ELFORM=10 if Poisson's ratio $v>0$ (metals, rubber, ...)

- implemented for common materials:

1,3,6,24,27,77,81,82,91,92,106,120,123,124,128,129,181,183,224,225,244

Theoretical background

- manual: "1 point nodal pressure tetrahedron for bulk forming"
- paper: J. Bonet \& A.J. Burton. A simple average nodal pressure tetrahedral element for incompressible dynamic explicit applications. Comm. Num. Meth. Engrg. 14: 437-449, 1998
"... the element prevents volumetric locking by defining nodal volumes and evaluating average nodal pressures in terms of these volumes ...
... it can be used in explicit dynamic applications involving (nearly) incompressible material behavior (e.g. rubber, ductile elastoplastic metals) ..."

TET \#13 = TET \#10 + averaging nodal pressures

= TET \#10 - volumetric locking

Notched steel specimen

*MAT_PIECEWISE_LINEAR_PLASTICITY
$E=206.9 \mathrm{kN} / \mathrm{mm}^{2}$
$v=0.29$
$\sigma_{y}=0.45 \mathrm{kN} / \mathrm{mm}^{2}$
$E_{t}=0.02 \mathrm{kN} / \mathrm{mm}^{2}$ (nearly ideal plastic)
isochoric plastic flow
discretized quarter system:

Notched steel specimen

Rubber block compression

HEX \#1
(IHQ=6)

HEX \#2

TET \#10

TET \#13
*MAT_MOONEY-RIVLIN_RUBBER
$A=4.0 \mathrm{~N} / \mathrm{mm}^{2}$
$B=2.4 \mathrm{~N} / \mathrm{mm}^{2} \quad \square$ nearly incompressible material
$v=0.499$
$\rho=1.5 \mathrm{E}-06 \mathrm{~kg} / \mathrm{mm}^{3}$

Rubber block compression

von Mises stresses $\left(0-1.2 \mathrm{~N} / \mathrm{mm}^{2}\right)$

Taylor bar impact

```
*MAT_PIECEWISE_LINEAR_PLASTICITY:
\rho=8930 kg/\mp@subsup{m}{}{3},E=117\textrm{kN}/\mp@subsup{\textrm{mm}}{}{2},v=0.35,\mp@subsup{\sigma}{y}{}=0.4\textrm{kN}/\mp@subsup{\textrm{mm}}{}{2},\mp@subsup{E}{t}{}=0.1\textrm{kN}/\mp@subsup{\textrm{mm}}{}{2}
```

deformation

Taylor bar impact

pressure (-300-300 N/mm²)

Higher order tets in LS-DYNA

ELFORM = 16

- 4(5) point 10 -noded tetrahedron
- good accuracy for moderate strains
- high cpu cost
- observe the node numbering
- use *CONTACT_AUTOMATIC_... With PID
- easy conversion of 4-noded tets via
 *ELEMENT_SOLID_TET4TOTET10
- full output with TET10=1 on *CONTROL_OUTPUT

ELFORM = 17

- 4(5) point 10-noded „composite" tetrahedron (12 linear sub-tetrahedrons)
- properties similar to type 16
- correct external force distribution

Plastic bending

- Explicit plastic 3 point bending (prescribed motion)
- plate of dimensions $300 \times 60 \times 5 \mathrm{~mm}^{3}$
- *MAT_024 (aluminum)

Plastic bending

Results

- maximum energy (internal)

Plastic bending

Results

- maximum energy (internal)

Hex and Tet with nodal rotations

ELFORM = 3

- quadratic 8 node hexahedron with nodal rotations, i.e. 6 DOF per node
- derived from 20 node hexahedron
- full integration (12-point)
- well suited for connections to shells
- good accuracy for small strains
- tendency to volumetric locking

ELFORM = 4

- quadratic 4 node tetrahedron with nodal rotations, i.e. 6 DOF per node
- derived from 10 node tetrahedron
- S/R integration (5-point)
- well suited for connections to shells
- good accuracy for small strains
- tendency to volumetric locking

load-displacement curve

Maximum principal stress (-50.0 - 450.0 N/mm²)

Pentahedra elements in LS-DYNA

ELFORM = 15

- 2 point selective reduced integration
- needs hourglass stabilization for twist mode (recent improvement \rightarrow next official versions)
- often used as transition element (ESORT=1)

ELFORM = 115 (new in next official versions)

- 1 point reduced integration
- needs hourglass stabilization
(analogue to hexahedron element type 1 with Flanagan-Belytschko hourglass formulation)

Time step control

- critical time step: $\quad \Delta t_{e}=\frac{L_{e}}{Q+\left(Q^{2}+c^{2}\right)^{1 / 2}} \approx \frac{L_{e}}{c}$
- adiabatic sound speed: $\quad c=\sqrt{\frac{E(1-v)}{(1+v)(1-2 v) \rho}}=\sqrt{\frac{K+\frac{4}{3} G}{\rho}}$
- characteristic element length

ELFORM $=1 / 2 / 3 /-1 /-2: L_{e}=V / A_{\max }$
ELFORM = 4: $L_{e}=0,85 h_{\text {min }}$

ELFORM $=10 / 13: L_{e}=h_{\min }$
ELFORM = 16: $L_{e}=0.3889 h_{\text {min }}$
ELFORM = 17: $\quad L_{e}=V / A_{\text {max }}$
$\square \mathrm{ELFORM}=15: \quad L_{e}=1 / \sqrt{B_{i j} B_{i j}}$

Time step control

- Example 1: Time step for solid elements with same volume

- Example 2: Time step for solid elements with same edge length

Conclusions \& Remarks

- Always set ESORT = 1 on *CONTROL_SOLID
- Use hexahedron elements if possible (regular solid bodies)
- ELFORM = 1 with $\mathrm{IHQ}=6$ or ELFORM $=2,3$
- ELFORM = -1 or -2 for „flat" hexas

- For complex solid structures, use tetrahedrons type $4,13,16$, or 17
- ELFORM = 16/17 are the most accurate tets, but not suited for large strains
- ELFORM = 13 needs finer mesh, well suited even for large strains (check if your material is supported)
- For metals or plastics (moderate strains), use tet type 4, 13, 16, or 17

- For rubber materials (incompressible, large strains) use tet type 13
- For bulk forming problems, use ELFORM = 13 and r-adaptivity
- Pentahedrons $15 / 115$ should only be used as transition elements

