

New Developments on Identification of Material and System Parameters with LS-OPT®

Katharina Witowski (DYNAmore GmbH) Markus Feucht (Daimler AG) Nielen Stander (LSTC)

October 12, 2011

1

Developers Forum, October 12, 2011, Stuttgart

- Introduction: Problem statement
- Example: Current ordinate-based curve matching metric
- Motivation and theory of new curve matching metric
- Examples
- Conclusions

Parameter identification: Objectives

- Parameter Identification problems are non-linear inverse problems solved using optimization
- A computed curve (from LS-DYNA[®]), dependent on parameters, is matched to an experimental curve
- Optimization provides a calibration of the unknown parameters
- An LS-OPT feature dedicated to Parameter Identification (MeanSqErr) has been available since LS-OPT v3
- Principle technologies involved:
 - Optimization algorithm
 - Curve Matching metric

Example: Material properties of a foam

Setup in LS-OPT GUI – Definition of load cases

into strategy convers	Dist Variables Sampling Histories Responses Objective Constraints Algorithms Ru	n Viewer		
Case1	Pre-Processor Package Name None	;		
ist of				
ad cases				
	Solver Package Name LS-DYNA			
	Files Env Vars Extra input files Import User Results Checkpoints Evaluate Metamode			
	Command Is971_s_7600	Browse		
	Input File foam1.k	Browse		
	Appended File Parameterized	Browse		
	LS-DYNA input file			
	Post-Processor Package Name None			

Setup in LS-OPT GUI – Definition of variables

Info Strat	egy Solvers D	list variables	Sampling	Histories	Responses	Objective	Constraints	Algorith	hms Run	Viewer
sign Variab pe /ariable	Name	Starting	Init. Range	Minimum 5.e5	n Maximun 2.e6	n		s	Saddle Direct	ion
/ariable	Yield	1500.		500.	2.e3		J	0	Minimize Cases • All	
Variables defined in input file automatically read		User has to specify min/max values				🔾 List				
ii a	n input automat	file ically r	ead	min	/max v	value	S			
i a	n input automat	riie ically r	ead	min	i/max v	value	S			
i	n input automat	riie ically r	ead	min	/max v	value	S			

Current Ordinate-based Parameter Identification (MeanSqErr) – Setup in LS-OPT GUI

- Setup in LS-OPT GUI Definition of test and simulated curves
- Reads test curve files directly

Interfaces to most
 LS-DYNA response types

 Crossplots can be defined, e.g. Stress vs. strain, Force vs. deformation ...

	< Info	Strategy Solvers Dist Variables	Sampling Histories Res	sponses Objective Con	straints Algorithms
	File	Input file name			
	Crosspl	ot Test1.txt		Browse	
ſ	Snecial	Fun			Force1
Ŀ	ABSTAT	Component	Direction	Histories	F1_vs_d
	BNDOUT	 Displacement 	 X Component 	Disp1	∽ Case2
	D3PLOT	Velocity	Y Component	Force1	Disp2
				F_vs_d	F2 vs d
		Acceleration	 Z Component 	Test1	Test1
	LOUT Rotational Displacement		 Resultant 		Test2
	GCEOUT	Rotational Velocity			
	GLSTAT				
	JNTFORC	Rotational Acceleration			
	MATSUM	 Deformation 		:	ace Delete
	NCFORC	O Distance			
	NODOUT	0			
	NODFOR			* * 2	
	RBDOUT			T T	
	RCFORC	IdentifierType ID			
1	SBTOUT	ID \$ 296			
	SECFORC	Filtering	A groopplat will	are ato the history E(7) given	E(t) and 7(t)
	SPCFORC	Filtering File	General express	sions are allowed.	F(t) and 2(t).
	ѕрноит 📕	None - Spe	cial Fun Z(t)		
1	V	Inju	ry Criteri -Disp1		~
		ABS	STAT F(t)		
		BNI	DOUT Force1	t- (- -f -f 0)	~
		D3F	PLOT Number of point	ts (plank for default)	
		DBB	BEMAC		
		0.00	-01		

Z

Current Ordinate-based Parameter Identification (MeanSqErr) – Setup in LS-OPT GUI

 Advanced options: number of points, start point, end points, weighting/scaling options

Results

 <u>Steep</u> parts of the response are difficult or impossible to incorporate, e.g. linear elastic range or failure (damage models such as the GISSMO model in LS-DYNA[®])

 Ranges of the computed and test curves do not coincide in the <u>abscissa</u> at an interim stage of the optimization resulting in instability

<u>Hysteretic</u> test curves or <u>springback</u> cannot be matched since the ordinate values are non-unique

- Partial matching is not robust, i.e. where only a part of the test curve or a part of the computed curve is available
- → Requires Curve Mapping

Partial Curve Mapping

Developers Forum, October 12, 2011, Stuttgart

Partial Curve Mapping algorithm

- Normalize the curves to the test (experimental) curve
 - Avoids problems with different magnitudes for abscissa and ordinate
 - Unit independent
- Map the short curve onto the long curve so that the lengths are equal (mild filtering of curves by user is recommended)
- The distance is defined by the area between the short curve and the mapping
- Optimize the offset to find the smallest distance between the curves
- Implemented into LS-OPT as

CurveMapSegment ("testcurve", "computed curve")

Optimization

- Metamodel-based, sequential
- Metamodel constructed at each time step to produce a <u>virtual</u> <u>history at an arbitrary design point</u> (similar to ordinate-based metric)
- Optimization convergence is ensured through sequential improvement (classical <u>Sequential Response Surface Method</u>)
- Avoids any <u>additional</u> nonlinearities due to the curve matching metric

LS-OPT 4.2 Interface for Curve Mapping

Imported experimental curve in 2-column format

Partial Curve Mapping: Hysteresis examples

Problem data

- 4 parameters
- Loading & unloading in one curve
- Partial experimental curve

Curve Match vs. Iteration number

Results

 Converges in 2 iterations (17 simulations)

Courtesy TRW

Optimization history of Discrepancy

Partial Curve Mapping: Hysteresis examples

Problem data

- 5 parameters
- Loading & Unloading in one curve

Curve Match vs. Iteration number

Optimization history of Discrepancy

Results

 Converges in 3 iterations (31 simulations)

Example: GISSMO Material Model (LS-DYNA)

- GISSMO (Neukamm, Feucht, Haufe)* is a material model available in LS-DYNA
- Damage model for use in both stamping and crash simulations
- Experiments used to calibrate GISSMO are often characterized by a steep failure curve. Springback could be present
- Example has 3 test cases and 7 unknown parameters. Typically tensile and shear tests

*Neukamm, F., Feucht, M., Haufe, A. Consistent damage modeling in the Process Chain of Forming to Crashworthiness Simulations. *Proceedings of the 7th LS-DYNA Anwenderforum, Bamberg, 2008.*

Example: GISSMO Material Model (LS-DYNA)

Experimental test program for calibration

Example : GISSMO Material Model (LS-DYNA)

Conclusions

- Partial Curve Mapping allows the identification of hysteretic curves
- Short/long test curves of computed curves can be handled
- Both the ordinate and the abscissa are incorporated
- Curve normalization ensures that the result is independent of the chosen measurement units
- LS-OPT input specification is very simple

Curve mapping is available in *LS-OPT Version 4.2*