Interaction Possibilities of Bonded and Loose Particles in LS-DYNA

<u>N. Karajan¹</u>, Z. Han², H. Teng², J. Wang² ¹ DYNAmore GmbH, Stuttgart, Germany ² LSTC, Livermore, USA

Information day: Multiphysics with LS-DYNA 4 March 2013, Stuttgart

Outline

- Introduction and Motivation
- Discrete-Element Method in LS-DYNA
- Sphere Packing with LS-PrePost

- Sample Applications
- Extension to Bonded Particles
- Conclusion

Introduction and Motivation

Granular Media

- Numerical Simulations Help to Design
 - Storage
 - Silos, Piles
 - Transportation
 - Conveyor belts, screws, Pumps
 - Processing
 - Sorting, Mixing, Segregation
 - Filling
 - Hopper/ funnel flow
 - Characteristics of Granular Media
 - Solid behavior when compacted
 - Fluid-like behavior when in motion
- Numerical Methods
 - Discrete-Element Method (DEM)
 - Finite-Element Method (FEM)

The Discrete-Element Method in LS-DYNA

- Definition of the Discrete Elements
 - Particles are approximated with spheres via
 - *PART, *SECTION_SOLID
 - Coordinate using ***NODE** and with a NID
 - Radius, Mass, Moment of Inertia

$$M = V\rho = \frac{4}{3}\pi r^{3}\rho \qquad I = \frac{2}{5}Mr^{2} = \frac{8}{15}\pi r^{5}\rho$$

Density is taken from *MAT_ELASTIC

*ELEMENT_DISCRETE_SPHERE_VOLUME									
\$	-+1	-+2-	+3-	+4	+5-	+	6+	7	+8
\$#	NID	PID	MASS	INERTIA	RADII				
	30001	4	570.2710	6036.748	5.14				
	30002	5	399.0092	3328.938	4.57				
	30003	6	139.1240	575.004	3.21				
*NO	DE								
\$	+1	+	2	+3	+	4	+5-	+6	
\$#	NID		Х	Y		Ζ	TC	RC	
	30001	-29	.00	-26.8		8.7	0	0	
	30002	-21	.00	-24.8		18.2	0	0	
	30003	-27	.00	-14.7		21.2	0	0	

- Definition of the Contact between Particles
 - Mechanical contact
 - Discrete-element formulation according to [Cundall & Strack 1979]

Extension to model cohesion using capillary forces

*CONTROL_DISCRETE_ELEMENT								
\$	-+1	+2	+3	+4	+5	+6	-+7	+8
\$#	NDAMP	TDAMP	Fric	FricR	NormK	ShearK	CAP	MXNSC
	0.700	0.400	0.41	0.001	0.01	0.0029	0	0
\$#	Gamma	CAPVOL	CAPANG					
	26.4	0.66	10.0					

Possible collision states

The Discrete-Element Method in LS-DYNA

Definition of the Particle-Structure Interaction

- Classical contact, e.g.: *CONTACT_AUTOMATIC_NODES_TO_SURFACE
 - Benefits of classical contact definitions
 - static and dynamic friction coefficients
 - constraint contacts are admissible
 - Drawbacks of the classical contact definitions
 - friction force is applied to particle center
 - not possible to apply rolling friction

New contact for discrete elements:

- **Damping determines if the collision is elastic or "plastic"** $0 \le \text{DAMP} \le 1.0$ (!)
- Benefits of the new contact definition
 - $\hfill\square$ friction force is applied at the perimeter
 - □ static and <u>rolling</u> friction coefficients
 - $\hfill\square$ possibility to define transportation belt velocity via ${\tt LCVxyz}$
- Drawbacks of the new contact definition
 - $\hfill\square$ no possibility to tweak via penalty scale factors

 F_{norm}

 $F_{\!\scriptscriptstyle f\!ric}$

norm

Sphere Packing with LS-PrePost

General Information

- Automatic packing algorithm for meshed objects
 - Bounded volume is required
 - Boundary with 3- or 4-noded shell elements
 - Support of double-connected volumes
 - $\hfill\square$ mesh for inner and outer surface needed
 - surface normals need to be consistent
- Specifications of the sphere packing engine
 - Currently limitation to equal radii
 - Single-thread implementation
 - Generation speed: ~600-1000 spheres/s on i7-3930 @ 3.2 GHz
 - Only available in developer version!
 LS-PrePost 4.1 (beta)
 of 25 February 2013 or later

Sphere Packing Example

- Open surface mesh or geometry and generate surface mesh
- Enter the discgendialog under Mesh/DiscGen

Sphere Packing with LS-PrePost

discgendialog

Radius:

LS PP

Parameter

- Select the bounding surface mesh to be packed
- Enter desired sphere radius
- Re-mesh the surface (important!)

discgendialog

42

¢

\$

\$

\$

Radius:

LS

Parameter

Sphere Packing with LS-PrePost

Sample Applications

- Biaxial Compression Test
 - Standard test to determine parameters of loose particles
 - Granular specimen (3300 particles) wrapped in latex
 - Pressure is applied to the side surfaces
 - Bottom, back and front surfaces are fixed
 - Top surface is displacement driven
 - LS-DYNA simulation
 - Force-displacement diagram

11

Granular Flow Through a Funnel

- Variation of the parameters in
 - *CONTROL_DISCRETE_ELEMENT
 - *DEFINE_DE_TO_SURFACE_COUPLING

\$+-	1	2		44	+5
RHO	0.80E-6	2.63E-6	2.63E-6	2.63E-6	1.0E-6
P-P Fric	0.57	0.57	0.57	0.10	0.00
P-P FricR	0.10	0.10	0.01	0.01	0.00
P-W FricS	0.27	0.30	0.30	0.10	0.01
P-W FricD	0.01	0.01	0.01	0.01	0.00
CAP	0	0	1	1	1
Gamma	0.00	0.00	7.20E-8	2.00E-6	7.2E-8
\$+-	1		3	44	5

Sample Applications

Drum Mixer

- 12371 particles with two densities
 - Green: foamed clay
 - Blue: sand

Hopper Flow

- 17000 particles of the same kind
 - Radii from 1.5 3 mm
 - Static & rolling friction of 0.5

Filling Process

- Dry particles are injected into a bag
 - Inside: 89331 particles (dry sand: fric = 0.57, fricr = 0.001)
 - Outside: 0.35 mm thick fabric membrane (air bag)

Filling Process

- Influence of capillary forces
- Snapshots taken at the same time

Bulk Flow Analysis

Introduction of a particle source and "sink"

*DEFINE_DE_INJECTION

- possibility to prescribe
 - location and rectangular size of the source
 - mass flow rate, initial velocity
 - min. and max. radius

Problem Description

- Belt conveyor
 - Deformable belt
 - Transport velocity
 - Contact with rigid supports
- Generated particles
 - Plastic grains

*DEFINE_DE_ACTIVE_REGION

 \Box definition via bounding box

Extension to Bonded Particles

Introduction of *DEFINE_DE_BOND

- All particles are linked to their neighboring particles through bonds
- Bonds represent the complete mechanical behavior of solid mechanics
- Bonds are independent of the DEM

Bond Properties can be Computed Automatically using Bulk and Shear Modulus of *MAT_ELASTIC

Every Bond is Subjected to

- Stretching
- Bending
- Shearing
- Twisting

Failure Mechanism and Bond Breakage

- Results in micro-damage
- Controlled by a critical fracture energy release rate
- Suitable to describe
 - Material separation
 - Progressive failure phenomena
- Possible applications include
 - Rock crushing
 - Rock blasting

LSTC

_ivermore Software Technology Corp.

Concrete failure

[Wikipedia]

[Wikipedia]

- Parallel bond normal/ shear stiffness: pbn, pbs
- Maximum normal/ shear stress: pbn_s, pbs_s $(0 = \infty)$
- Bond radius multiplier, damping: sfa, alpha
- Automatic Definition of the Bonds: bondform=2
 - Inear-elastic bond formulation for brittle materials fracture analysis

*DE	FINE_DE_	BOND				
\$#	sid	stype	bdform	idim		
	42	0		3		
\$#	pbk_sf	pbs_sf	fenrgk	fenrgs	bondr	alpha
	1.0	1.0	0.285	0.013	3.75	0.0
\$#	precrk	cktype				
	12	1				

- Scale factor for normal/ shear stiffness: pbk_sf, pbs_sf
- Fracture energy release rate for volumetric/ shear deformation: fenrgk, fenrgs
- Influence radius and damping: bondr, alpha
- ID of 3D shell set for the pre-crack: precrck, cktype=0,1 for part set or part

Application with Manual Bond Definition

- Possibility to define clustered particle sets
 - Useful, to approximate non-spherical particles
 - Estimation with rolling friction might not be sufficient
 - High normal stiffness, low shear stiffness
 - Here: Definition of infinite maximum bond stress (unbreakable bonds)

*DEFINE_DE_BOND								
\$#	sid	stype	bdform	dim				
	42	0	1	3				
\$#	pbn 10.0	pbs 0.1	pbn_s 0.0	pbs_s 0.0				

Application with Automatic Bond Definition

- Benchmark test: Beam under gravity loading
 - Goal: Reproduce linear-elastic material behavior
 - Comparison of finite-element and discrete-element discretization
 - □ A: 4411 bonded spheres
 - B: 18423 bonded spheres
 - □ C: 73646 bonded spheres
 - D: 4000 linear shells

Normal displacement [mm]

Z-displacement [mm]

Benchmark for Crack Propagation

- Pre-notched plate under tension
 - Quasi-static loading
 - Material: Duran 50 glass
 - Density: 2235kg/m³
 - Young's modulus: 65GPa
 - Poisson ratio: 0.2
 - Fracture energy release rate: 204 J/m²
- Case I
 - 4000 spheres r = 0.5 mm
 - Crack growth speed: 2012 m/s
 - Fracture energy: 10.2 mJ
- Case II
 - 16000 spheres r = 0.25 mm
 - Crack growth speed: 2058 m/s
 - Fracture energy: 10.7 mJ
- Case III
 - 64000 spheres r = 0.125 mm
 - Crack growth speed: 2028 m/s
 - Fracture energy: 11.1 mJ

Fragmentation Analysis with Bonded Particles

Particle-Structure Interaction

Failure Analysis of a Concrete Specimen During Impact Loading

- Column: h=100mm, r=20mm
- Loading speed: 1 mm/ms
- Colors indicate crack path

■ 4534 spheres, r=1.5 mm, rbond=5.25mm ■ 15725 spheres, r=1.0 mm, rbond=5.25mm

Particle-Structure Interaction

Failure of a Pre-Cracked Specimen

- Loading plates via *CONTACT_CONSTRAINT_NODES_TO_SURFACE
- Pre-cracks defined by shell sets

Conclusion

- Introduction of Loose Particles
 - Particle definition with volume option
 - Particle-particle interaction
 - contact stiffness, damping and friction
 - cohesion
 - Particle-structure interaction
 - deformable or rigid finite-element structures
 - contact stiffness, damping and friction
 - Particle source and "sink" for bulk flow analysis
- Extension to Bonded Particles
 - Linear-elastic solid behavior
 - Brittle fracture
- Coupling to Fluid Flow
 - Current status with a constraint coupling
 - Penalty coupling is under way

Thank you for your attention!

