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Motivation: safety and economy

Fatigue damage estimated to cause 90% of all mechanical failures.

American Society for Metals

Estimated costs for failure to be $119 billion in 1982 (4% of US GDP).

National Bureau of Standards

Brittle fracture on 1250 Liberty ships initiated Collapse of the Seongsu bridge due to the welding Crack on a bike frame starting from weld seam
at welds (50th) failure (1994)

Practical experience clearly shows that fatigue damage generally originates from welds,
which are considered to be the weakest link of welded structures.
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Goal: enhanced fatigue assessment

A world of joining experience

4@( International Institute of Welding

Structural hot spot Effective
stress concept notch stress concept

400

Ao [MPa]
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+ simple and fast
+ widely accepted

- many assumptions — suboptimal design

- generalization of material, welding process
and geometry

- exotic weld types missing

Coupled welding-fatigue analysis

microstructure
material properties
residual stresses
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+ specific material and welding process
+ prediction of residual stresses and microstructure
+ understanding of phenomena and their interactions

- comprehensive modeling and material
characterization
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Fatigue of metals

For metals the whole life span can be split into three stages:

(I) Crack initiation - nucleation at inclusions, persistent slip bands

(II) Crack propagation - incremental crack growth (inter- and transcrystalline)
(Il Failure - final rapid crack propagation

initiation propagation collapse
i




Fatigue of welds

High probability of crack-like flaws after the welding process, heterogeneity of
microstructure and residual stresses lead to significant differences in fatigue

assessment of welds compared to non-welded structures.

The stage of crack initiation is relatively insignificant for welds.
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Fracture mechanics

Fracture mechanics deals with cracks and can be used for the estimation of fatigue
crack growth. Depending on the size of the plastic zone at a crack tip a linear-elastic
(LEFM) or elastic-plastic fracture mechanics (EPFM) has to be applied.

EPFM LEFM

E‘* Nog(da/dN)
S m 1) ()
° crack i crack propagation | fracture
nucleation ! !
LCF HCF VHCF < Ath )LDg( AK)
10° 10°-10’ log(N)  *infinite” finite life

Let us focus on LEFM since it covers the most relevant fatigue regimes.
The threshold for the initial crack propagation can be taken as a criterion for VHCF,
whereas crack growth can be used for HCF and LCF.
If the maximum allowable flaw size is known (e.g. manufacturing process with NDT), a
deterministic approach instead of a stochastic can be applied.
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Weight function method

For a rapid estimation of crack growth
the weight function method can be NN T

used. The stress intensity factor for ﬁ P \T[“

Mode | is obtained by integrating the %4_ Ve

product of the stress distribution c(x)

and the weight function m(x,a): NG L=
: | il E_
AKA,B IAU(X)mA,B(X’a)dX o L R DU S B
0

load

Stress distribution through the plate
thickness is crucial for the crack growth
analysis.

45 degree flank angle
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Courtesy of Winterthur Gas & Diesel Ltd.

NMiIiORE swiss



Very High Cycle Fatigue
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hardeness vs. fatigue limit

Short cracks (Murakami):

Long cracks (Chapetti):
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High & Low Cycle Fatigue

log(da/dN) Paris law:
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In case the exact residual stress distribution, including its alternation as well as gradient
of microstructure are unknown, a constant R=0.5 can be assumed as the worst case.
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Fatigue life prediction

Al<th,R
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S235JR

HV213

C=9.71E-9

m=2.71

semi-elliptical surface crack
ao=1mm

ao/co=0.1

afr = 0.8t

crack opening Mode |
R=0.5, no crack closure

LEFM based model with worst case assumptions can properly reproduce S-N curves from
standards — with one essential difference — it is for a particular material, welding process
and stress state.
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Multiaxial and non-proportional loading

Due to the complex loading and geometry, multiaxial and non-proportional
stress history is very common for real structures. Critical plane approach
combined with appropriate stress criterion can be applied. Assuming the
crack opening Mode | as dominating, the maximum normal stress amplitude

has to be evaluated:
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Size effect

So far the model was deterministic, based on the maximum allowable flaw
size. If the probability density function for defects is known, a stochastic
approach can be applied. In this case the probability of failure increases
with the length of weld seam - this is very important for real structures.

Weakest link theory:

Survival probability of a system is a
product of reliabilities of each link

Failure probability for each link

Effective stress area

2
Statistical size factor used to )
_ . —n — Oln
scale fatigue limit n= max{ A, ’ A } R=1%/Rs Kge =€
ef
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Fatigue of welds

Important factors:
B service loading (asymmetry, non-proportionality, multiaxiality)

B weld seam geometry (notch radius and angle)

B microstructure (phase, grain size)

B mechanical properties (hardness, hardening)

B residual stresses

Welding simulation provides totally new possibilities for improved fatigue analysis.
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Case study: 2-stroke marine diesel engine

S235JR

engine frame
- plate thicknesses 8 — 60 mm

manual multi-pass MAG weldings

exhaust gas system

— N -
BB RS (-~

- high temperature
- LCF, VHCF, TMF
- high cycle fatigue

- room temperature
- VHCF
- hon-proportional multiaxial loading

Courtesy of Winterthur Gas & Diesel Ltd.
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Single bevel butt weld

Welding

Fatigue tests
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Courtesy of Winterthur Gas & Diesel Ltd.
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Material characterization

| _ﬂﬂ““ﬂﬂﬂﬂ“-ﬂ
; Pos.
. S235]R 0.75 0.016 0.014 <0.01 .02 <0.01 <0.02 <0.01 <0.01
‘ ' Pos. 1 0.11 0.62 1.13 0.013 0.016 <0.05 0.05 <0.01 0.02 <0.02 0.078
’ (solid wire)

5 Pos. 2 0.105 0.61 1.14 0.013 0.009 <0.05 0.036 <0.01 0.042 <0.02 0.11

(flux-cored
wire)
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Welding simulation

Material model §= £y +E,) +Ey FE +E,
n(T)-1
. P.(T)-P(T) P, (T) (M)
Multi-phase Leblond: P(T)= n( = ' J In i
P o(T) P (T)—P(T)

Koistinen-Marburger: P(T,t) =1—e °MsT®)

e BT
20 3

Thermal
Speed, [cm/min] Heat input, [kJ/m] efficiency
factor

140 1614 0.95
230 CO2 1316 0.85
30 280 18 Co, 2772 0.69
32 320 22 co, 2765 0.75
29 290 20 Co, 2523 0.82

vertical support
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Welding simulation

temperature stress
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Courtesy of Winterthur Gas & Diesel Ltd.

Simulation predicts measured temperature evolution and residual stresses.
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Microstructure prediction
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Material properties on weld notch

Temperature (C)
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Courtesy of Winterthur Gas & Diesel Ltd.

Hardness (VPN)
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Fast thermal simulation can provide a lot of valuable information about the
microstructure and mechanical properties on weld notches.
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Post-weld heat treatment

after welding after PWHT

Temperature

Tem perature [*(C)

Voon Mises equivalent stress [MPa)

Courtesy of Winterthur Gas & Diesel Ltd.
1] 250 SO0 750 1 (WD 1250

Post-weld heat treatment can significantly influence residual stress distribution and so
the fatigue limit.
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Cyclic bending test
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Courtesy of Winterthur Gas & Diesel Ltd.

Coupled welding-fatigue analysis is able to explain fracture behavior observed in
experiments.
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Large structures

In order to rapidly identify critical areas the following relation can be
applied for large structures (assuming proportional plane stress state):

Courtesy of Winterthur Gas & Diesel Ltd.




Conclusions

B welding process simulation can be effectively used for the prediction
of microstructure, mechanical properties and residual stresses

B based on the worst case assumptions regarding the loading and initial
flaw size, LEFM can be successfully applied for estimating fatigue
limits at VHCF- and LCF-regimes

B coupled welding-fatigue analysis is able to accurately predict fatigue
behavior of welded structures

B derived by this approach S-N curves can be successfuly used for
fatigue assessment of large welded structures






