

Katharina Witowski DYNAmore GmbH, Stuttgart www.dynamore.de

Stuttgart, 11.4.2016

Outline

- About LS-OPT
- Motivation
- Robustness Analysis
 - Direct and metamodel-based Monte Carlo Analysis
- Optimization
 - RBDO/RDO
 - Tolerance Optimization
- Summary
- Outlook

About LS-OPT

- LS-OPT is a standalone optimization software
 - \rightarrow can be linked to any simulation code
 - Interface to LS-DYNA, MSC-Nastran, Excel, Matlab
 - User-defined interface
 - Interfaces to preprocessors, e.g. for shape optimization
 - Interface to LS-PrePost, ANSA, Hypermorph, ...
 - User-defined interface to any preprocessor
 - Result extraction
 - Interface to META Post
 - User-defined interface

About LS-OPT

- LS-DYNA Integration
 - Checking of LS-DYNA keyword files (*DATABASE_)
 - Importation of design parameters from LS-DYNA keyword files (*PARAMETER)
 - Support of include files (*INCLUDE)
 - Monitoring of LS-DYNA progress
 - Result extraction of most LS-DYNA response types
 - D3plot compression (node and part selection)

		Stage Cas	sel	×
	Setup Parameters Histories	Responses File Operation	s	
	Response definitions			Add new
	New response		\mathbf{X}	
Name	Subcase	Multipiler	Offset	DBBEMAC
Displ		· · · · · · · · · · · · · · · · · · ·	0	DBFSI
			madal linkad	DEFORC
		Not meta	amodel-linked	ELOUT
Component Di	irection			FLD
	X Component			FREQUENCY
Displacement	Y Component			GCEOUT
O Velocity	7 Component			GLSTAT
O Acceleration	Besultant			INTFORC
Botational Displacement				MASS
Rotational Velocity				MATSUM
Botational Acceleration				■ <u>NCFORC</u>
 Deformation 				NODOUT
 Distance 				NODFOR
Identificant in a ID				PSTRESS
Identifier lype ID				RBDOUT
ID \$ 42000128				RCFORC
Select Fr	rom time To time			RWFORC
Maximum Value				<u>SBTOUT</u>
				SECFORC
Filtering				SPCFORC
SAE Filter 🗘				<u>SPHOUT</u>
Frequency Time unit				SWFORC
60 Seconds				THICK
Seconds	`			
		<u>C</u> ancel	<u>o</u> k	<u>O</u> K

About LS-OPT

- Current production version is LS-OPT 5.2
- LS-OPT Support web page
 - → <u>www.lsoptsupport.com</u>
 - Download of Executables
 - Tutorials
 - HowTos / FAQs
 - Documents

MORE

Robustness Analysis with LS-OPT

Motivation

- Simulation
 - Design parameters (sheet thicknesses, material properties, ...) fully controllable
- Reality
 - Design parameters are associated with uncertainties
- Sources of uncertainties
 - Manufacturing imperfections
 - Load variations
 - Environment variations

front mid

Variation of design parameters (uncertainties) should be considered in design process simulation

Estimation of probability quantities of variables and responses

t1

t2 t3 t4 t5

t6 t10 t64

t73

-1

- mean
- standard deviation
- distribution function
- Analysis of relationship (sensitivities)
 variables ←→ responses
 - correlation analysis
 - stochastic contributions
- Reliability of a system
 - evaluation of probability of failure

- Uncertainties of variables (sheet thicknesses, material properties, ...)
 - Probability density function
 - Uniform distribution
 - Normal distribution
 - ...
 - *PERTURBATION (LS-DYNA keyword)
 - Geometric imperfections
 - Material imperfections
 - \rightarrow Buckling analysis

- Scatter of parameters constituted by means of probability distributions
- Approximation of probability distributions using appropriate samples = experiments
- Investigation of the FEA-model = system using experiments
- Distribution of the system responses
- Permitted area?
- Approximation to exact distribution

- Monte Carlo Analysis using direct simulations
 - Random process
 - Large number of simulation runs (100+)
- Monte Carlo Analysis using Metamodels
 - Construction of a metamodel (Polynomials, Radial Basis Functions, Feedforward Neural Networks)
 - Number of simulations depends on number of variables
 - Reliability, Robustness Analysis through functional evaluation of sampling points (10⁶) on the metamodel

Metamodel-based Methods

Histogram and Boxplot

Statistics Summary

Probability of constraint violation

Sensitivities

Covariance

- Sensitivities
 - Correlation Matrix

				Variables								Responses			s	
								-		-	Æ	o de	1Pulse de	2PUISE de	3Pulse	
		11	12	3	۲A	t5	46	t20	t6 ⁴	13	MAS	Stag	Stay	Stay	DISP	Acce.
	tl	and the set	-0.01	0.01	-0.01	0.01	0.03	0.00	0.00	0.02	0.22	0.05	0.57	0.21	-0.50	-0.07
	t2		l'altra	-0.01	0.01	0.06	0.04	0.01	0.03	-0.01	0.21	0.03	0.47	0.17	-0.41	-0.02
	t3			b ladd	0.03	0.03	-0.00	-0.00	-0.00	0.03	0.21	0.04	0.31	0.48	-0.52	-0.12
es	t4	S. 36.			Line and	-0.01	0.02	0.03	0.01	0.01	0.19	0.07	0.46	0.13	-0.41	-0.05
riabl	t5						-0.01	0.02	0.03	0.01	0.46	-0.04	-0.00	-0.10	0.08	-0.14
Va	t6							-0.04	-0.02	-0.01	0.45	-0.14	0.05	-0.10	0.07	0.08
	t10								0.01	0.06	0.33	0.97	-0.28	0.02	0.03	-0.00
	t64									0.00	0.07	-0.01	0.11	0.01	-0.07	0.01
_	t73										0.60	-0.12	-0.10	0.18	-0.04	-0.06
Composites Responses	MASS			输动时的	WARE							0.17	0.21	0.20	-0.28	-0.10
	Stage1Pulse							Contraction of the local division	的影响				-0.18	0.04	-0.06	-0.00
	Stage2Pulse												Å	0.37	-0.85	-0.09
	Stage3Pulse														-0.67	-0.09
	Disp			林秋秋秋				的新闻的					Marine .	Section 2		0.16
	Accel	and the second second	Part of the Party	a the second second	ad a second as		and the second	Contraction of the second	College Street	Second Second		annin the	Same and	ALL STREET	A CONTRACTOR	

- History Statistics
 - Mean
 - Standard deviation
 - Max
 - Min
 - Safety Margin

. . .

DYNAStats

- Fringe of statistics on the FE model
- Evaluation of node and element statistics through d3plot files
- Buckling Analysis Fringe Components of Displ-Variance (40 runs)
 - Here: Standard deviation of y-displacements of each node

Optimization considering uncertainties

Optimization

- Deterministic optimization
 - Minimize Objective Function subject to Constraints
 - Optimum very often lies on the constraint boundary

RBDO/Robust Parameter Design

- Includes uncertainty of variables and responses into optimization
- Requires statistical distribution of variables
- Control Variables (Design Parameters)
 - Nominal value controlled by designer
 - Gauge
 - Shape

Noise Variables (Environment)

- Values not controlled by designer but can vary
 - Load
 - Yield stress
 - Friction

1				(Prob	lem glob	al se	tup					
Parameter Setu	o Sta	ige Matrix	Sampling Matrix	Resources	Fea	tures							
 Show advance Enforce Varia 	ed op: ble Bo	tions unds											
Туре		Name		Starting		Minimum		Maximum		Distributior	ı	Delete	
Noise	`	Area								area	~	🔺 ×	
Continuous	~	Base			0.8		0.1		1.6	(none)	~	🔺 ×	
Add													

RBDO/Robust Parameter Design

- Robust Parameter Design (RDO)
 - Improve/Maximize the robustness of the optimum
- Reliability Based Design Optimization (RBDO)
 - Improve failure probability of optimum

RBDO/Robust Parameter Design

- Method to solve RBDO/RDO
 - Metamodel-based optimization

Tolerance Optimization

- RBDO/RDO
 - Variables associated with distribution
 - Mean variable values (distribution means) are optimized
- Tolerance Optimization
 - Variables associated with tolerance values
 - → Optimize nominal design variables and tolerances
 - Maximize tolerance
 - No failure within tolerance
 - \rightarrow incorporate uncertainties into optimization if variable distributions are not available

Tolerance Optimization

- Tolerance optimization requires large number of function evaluations
 Performed in two steps to avoid high computational costs
- Step 1: Deterministic metamodel-based optimization
 - Single Iteration or Sequential
 - many simulations (quality of metamodel!)
 - Nonlinear metamodel (RBF, FFNN, ...)
 - →Global Metamodel
 - \rightarrow Bound for optimal value

Tolerance Optimization

Step 2: Multi-level setup

Example Tolerance Optimization

- Full frontal crash of Chevrolet C2500 Pickup truck
- FE model: National Crash Analysis Center
- Simulations performed with LS-DYNA
- Optimization problem:
 - Minimize mass
 - Constraints on stage pulse responses and intrusion
 - Consideration of uncertainties

 \rightarrow Tolerance optimization

6 thickness design parameters

Example Tolerance Optimization

- Inner level Monte Carlo Analysis
 - Histogram with mean values and standard deviation
 - Background colored by feasibility

Example Tolerance Optimization

- Outer level MOO
 - Tradeoff plot of Pareto optimal solutions

 \rightarrow tolerance as well as the mass could be improved

Summary

- Monte Carlo Analysis (Robustness Analysis)
 - Direct or metamodel based
 - Estimation of PDF, mean, standard deviation, ... of responses
 - Significance of parameters
 - Correlation coefficients
 - Stochastic contribution (only metamodel based MC Analysis)
 - Reliability of system
 - Confidence intervals
 - Buckling Analysis
 - DYNAStats: fringe of statistics on the FE model

Summary

- Reliability Based Design Optimization (RBDO)
 - Probabilistic bounds on constraints
- Robust Parameter Design
 - Minimize Standard Deviation of response
- Tolerance Optimization
 - Incorporate uncertainties into optimization if no distribution information of the variables is available
 - Maximize tolerance
 - no failure within tolerance

Outlook Robustness Analysis with LS-OPT

- Reliability
 - Accuracy: small probabilities.
 - \rightarrow Sequential Adaptive Reliability Analysis
- Tolerance Optimization
 - Simplification to single level setup
- History Statistics
 - Correlation with variable or response
 - Variable Contribution
- Rework of DYNAStats GUI

Thank you!

