

Investigation of Energy Absorption in Textile Composites with the Mapping **Tool ENVYO**

M. Vinot, C. Liebold, M. Holzapfel

Knowledge for Tomorrow

Multiscale simulations as a replacement to experimental tests

* http://www.sailingscuttlebutt.com ** https://www.nts.com/ntsblog/x-ray-computed-tomography-scanning-composite-materials/ *** http://www.azom.com

Investigation of textile composites - methodology

Reference approach

Modelling with UD-plies

Mapping approach

- 1. Generation of a realistic FE-Model on the mesoscale
- 2. Transfer of yarn orientations on a target mesh

Advantages

- "universal" approach (weave / UD...)
- fast model generation
- low computing time

Drawbacks

- local effects are not considerated
- fibre architecture is not reproduced

Advantages

- realistic approach
- consideration of manufacturing effects

Drawbacks

- complex model generation
- increased computing time

Modelling methodology for diverse textile composites

Validation of the yarn architecture in unit cells with CT-scans

FE-model of a 30°-triaxial braid

Results of the simulation on the mesoscale

*MA	T_ENHANCE	ED_COMPOSIT	E_DAMAGE					
\$#	mid	ro	ea	eb	(ec)	prba	(prca)	(prcb)
	330	1.6e-06	66.11	10.36		0.84		
\$#	gab	gbc	gca	(kf)	aopt	2way		
	65.75				2			
\$#	хр	УÞ	zp	a1	a2	a3	mangle	
						1		
\$#	v1	v2	v3	d1	d2	d3	dfailm	dfails
							0.01	0.005
\$#	tfail	alph	soft	fbrt	ycfac	dfailt	dfailc	efs
						0.013	0.007	
\$#	xc	xt	ус	Уt	sc	crit	beta	
	0.413	0.773	0.106	0.069	0.154			
\$#	pel	epsf	epsr	tsmd	soft2			
\$ #	slimt1	slimc1	slimt2	slimc2	slims	ncyred	softg	
	0.54	0.18	0.6	0.05	0.16			

(ec)

aopt

2

a2

d2

SC

vcfac

0.147

soft2

slims

0.15

prba

0.83

2way

a3

1

d3

dfailt

0.017

ncyred

crit

(prca)

mangle

dfailm

0.007

dfailc

0.006

beta

softg

(prcb)

dfails

0.004 efs

Material card for the macroscale

Mapping algorithms in ENVYO

3+1 algorithms are available in the latest version of ENVYO

<u>Closest Point</u> Direct transfer of fiber orientations from the source mesh to the target mesh, part after part	
Element Size Search Radius Use of element size of target mesh as a search radius for the mapping Mapping of matrix-rich regions possible	- Information transfer
Consider Ondulation Transfer of orientations starting from the target mesh Consideration of fiber ondulation possible Mapping of matrix-rich regions possible	
<u>Mapping RVE</u> Clustering of the source mesh in region with constant fiber architecture → Informat	ion simplification

Mapping of orientations with "ConsiderOndulation"

Mapping of orientations with "ConsiderOndulation"

Simulation of a tensile braided specimen

- local strain and stress fields are well predicted
- stiffness and strength prediction are more reliable with the mapping approach

State of the art reference simulation

Simulation with the new mapping approach

Crash tube – modelling approach

Bearing test specimen – modelling approach

Bearing test – numerical results

Crash tube – comparison of mapping methods on triaxial braid 30°

Crash tube – benefits of the mapping approach

Crash tube – influence of braiding angle

Conclusion

- The simulation approaches on the multiscale have been studied and validated on crash tubes and bearing specimens.
- The failure mechanisms are realistically reproduced through the mapping with ENVYO.
- The methodology should be more accurately investigated on different specimen geometry and textiles.
- The mapping requires experience and a good understanding of the parameters.

Outlook

Thank you for your attention

ARENA2036 DigitPro

Bundesministerium für Bildung und Forschung

FORSCHUNGS

öffentlich-private Partnerschaft für Innovationen

Mathieu Vinot (mathieu.vinot@dlr.de)

German Aerospace Center (DLR) Institute of Structures and Design Stuttgart – Germany Christian Liebold (christian.liebold@dynamore.de)

DYNAmore GmbH Stuttgart – Germany

