

University of Stuttgart Institute for Modelling and Simulation of Biomechanical Systems

Computational Biophysics and Biorobotics (Schmitt group)

Active Human Body Models

for Ergonomics and

Safety Research and Development

Goal: generate human motion based on biological signals, <u>purely synthetic</u> but realistic

Method: Theory and computer simulation to combine neuroscience and biomechanics

Models to account for:

motor control (CNS) sensor-actuator loop (muscles) skeleton (bones and soft tissue)

NOTE:

no inverse calculation **no** kinematic input data needed AI heavily involved similar to any other CAx method

Learning? Maybe, a rather naive and simple approach!

Given a specific control idea, learning is ...

- finding appropriate muscle stimulation pattern, time to change pattern, etc., using *trial and error* (heuristics) or *fmincon* (gradient-based methods)
- optimising controller gains using Bayesian optimisation,
- balancing feedforward and feedback contributions using heuristics,
- autonomously learn the control policy using an artificial neural network and sequential quadratic programming.

(alter & Schmitt, 2012)

2018)

läufle et al., 2019)

(Driess et al., 2018)

Günther & Ruder, 2003)

(Walter 8

(Le Mouel, Martin et al., in p

(Suissa

Vehicle safety assessment

University of Stuttgart

Crash tests with ATDs vs virtual testing with HBMs

HBMs – Human Body Models

ATDs – Anthropomorphic Test Devices

Product Development

M. van Ratingen, Saving Lives with Safer Cars: The Past, Present and Future of Consumer Safety Ratings, Bertil Aldman Memorial Lecture, in: Proceedings of the IRCOBI Conference, Malaga, Spain, 2016, https://prezi.com/rfo1donwal66/bertil-aldman-lecture-2016/

One of the possible solutions: Autonomous Cars

A History of Autonomous Vehicles

Mercedes van, Bundeswehr University Munich, 1986-2003

http://www.computerhistory.org/atchm/where-to-a-history-of-autonomous-vehicles/

aHBM: a finite element approach

	Q			Control system and environment				
	A.	Bones Structure	Deformable bodies	Linear elasticity Viscous damping				
	the second	Ligaments, cartilage, fat Springs	Passive forces	Inertia forces $M\ddot{v}_n + C\dot{v}_n + Kv_n = P_n(t)$				
	2	Muscles	Active	Hill-type 1d muscle elements	THUMS AM50 Occupant Model Version 5.0			
I		Motors	forces	$F_{MTU,i} = f_f(l_{MTU,i}, \dot{l}_{MTU,i}, l_{CE,i}, a_i)$	PEE SEE			
	A	Neurons Wires, CPU	Reflexes, commands	Activation/stimulation signal for muscle $u_{hybrid}^{total}\Big _{0}^{1} = u_{\lambda}^{closed} + u_{\alpha}^{open}$	CE lesc			
					Controller			

cbb

Possible Muscle Activation Schemes:

- Normalized EMG
- Engineering judgment
- Reflex activation (vestibular and spindle)

- PID controllers
- Optimization
- Reinforcement learning

ÖsthEtAl2015, MartynenkoEtAl2019 PAMM

MAT_MUSCLE vs Extended Hill-type Muscle Model Mechanics

- Full-text access: <u>http://rdcu.be/vw5G</u>
- DOI: dx.doi.org/10.1186/s12938-017-0399-7
- Supplementary material: dx.doi.org/10.5281/zenodo.826209

Kleinbach et al. BioMed Eng OnLine (2017) 16:109 DOI 10.1186/s12938-017-0399-7 BioMedical Engineering OnLine

SOFTWARE

Open Access

Implementation and validation of the extended Hill-type muscle model with robust routing capabilities in LS-DYNA for active human body models

*MAT_MUSCLE

Extended Hill-type muscle material

Source: biodigital.com

MartynenkoEtAl2017 IRCOBI, Kleinbach2017

Extended Hill-type Muscle Model with internal controller

Flowchart of the Muscle Controller Code

Extended Hill-type Muscle Model example simulations

University of Stuttgart Germany

Changing angle for an arm with finite element multibody models

MartynenkoEtAl2018 IRCOBI

Extended Hill-type Muscle Model example simulations

Comparison of different controllers with reference data

 Angle response for different controllers with the reference data from KistemakerEtAl2006 for *MAT_156 (left) and EHTM (right)

· CPU time in seconds for simulations with different models

	α, EHTM	α, *MAT_156	λ, EHTM	λ, *MAT_156	Hybrid, EHTM	Hybrid, *MAT_156	Angle, *MAT_156
Element processing	0,719	6,386	0,724	6,751	0,748	6,729	6,808
Rigid Bodies	1,137	13,771	1,141	14,196	1,151	14,361	14,262
Time step size	2,010	23,521	2,004	23,638	2,006	24,061	23,709
Misc. 1	0,976	10,547	0,961	11,057	0,972	11,137	10,989
Misc. 4	2,797	33,255	2,781	33,965	2,786	34,478	33,886
Problem cycle	45001	517624	45001	549290	45001	548631	549303
Total CPU	9,021	97,897	8,987	100,650	9,074	101,730	100,490

cbb

aHBM: development within our group

References: aHBM development within our group

- 1. SchmittEtAl2015 IRCOBI S Schmitt, J Blaschke, P Boehm, C Mayer, Active Muscles for the Implementation in Human Body Models. IRCOBI 2015, pp. 648-649
- FellerEtAl2016 IRCOBI Feller, L.; Kleinbach, C.; Fehr, J.; Schmitt, S.: Incorporating Muscle Activation Dynamics into the Global Human Body Model. Proceedings of IRCOBI Conference, 2016.
- FehrEtAl2017 Fehr, J.; Kempter, F.; Kleinbach, C.; Schmitt, S.: Guiding Strategy for an Open Source Hill-type Muscle Model in LS-Dyna and Implementation in the Upper Extremity of a HBM. Proceedings of IRCOBI Conference, Antwerpen, Belgium, IRC-17-92, 2017.
- KleinbachEtAl2017 Kleinbach, C., Martynenko, O.V., Promies, J., Haeufle, D. F. B., Fehr, J., & Schmitt, S. (2017). Implementation and validation of the extended Hill-type muscle model with robust routing capabilities in LS-DYNA for active human body models. BioMedical Engineering OnLine, 16(1). https://doi.org/10.1186/s12938-017-0399-7
- MartynenkoEtAl2017 PAMM Martynenko, O., Schmitt, S., Bayer, A., Blaschke, J., Mayer, C., Development of a movement generation algorithm for Finite Element Human Body Models. Proceedings in Applied Mathematics and Mechanics (PAMM), 2017, 17(1)
- MartynenkoEtAl2017 IRCOBI OV Martynenko, F Kempter, C Kleinbach, S Schmitt, J Fehr, Advanced Hill-type Muscle model as User Defined Material in LS-DYNA with Routing Capability for Application in Active Human Body Models. IRCOBI 2017, pp. 679-680
- MartynenkoEtAl2018 PAMM OV Martynenko, F Kempter, C Kleinbach, S Schmitt, J Fehr. Development of an internal physiological muscle controller within an open-source Hill-type material model in LS-DYNA. Proceedings in Applied Mathematics and Mechanics (PAMM), 2018, 18(1).
- MartynenkoEtAl2018 IRCOBI OV Martynenko, F Kempter, C Kleinbach, S Schmitt, J Fehr, Integrated Physiologically Motivated Controller for the Open-Source Extended Hil-type Muscle Model in LS-DYNA. IRCOBI 2018, pp. 239-241
- FernandesEtAl2019 IRCOBI N.A.T.C. Fernandes, S. Schmitt, O.V. Martynenko. Modelling and Validation of the 3D Muscle-Tendon Unit with Solid Finite Elements in LS-DYNA for Active Human Body Model Applications. IRCOBI 2019
- MartynenkoEtAl2019 PAMM O.V. Martynenko, K. Stollenmaier, C. Endler, F.T. Neininger, S. Schmitt, D.F.B. Haeufle. Towards overcoming the bottleneck of optimizing control parameters in finite element active human body models. Proceedings in Applied Mathematics and Mechanics (PAMM), 2019, 19(1).
- MartynenkoEtAl2019 ESV26 OV Martynenko, FT Neininger, S Schmitt, Development of a Hybrid Muscle Controller for an Active Finite Element Human Body Model in LS-DYNA Capable of Occupant Kinematics Prediction in Frontal and Lateral Maneuvers. ESV26, pp. 1-11
- WochnerEtAl2019 IRCOBI I. Wochner, C.A. Endler, S Schmitt, OV Martynenko. Comparison of Controller Strategies for Active Human Body Models with Different Muscle Materials. IRCOBI 2019