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Summary: 
 
The focus of the present work is to perform an assessment of a relatively new class of numerical 
methods, referred to as meshfree methods, that offer analysts an alternate analytical technique for 
simulating this class of ballistic problems, without a priori trajectory knowledge, nor resorting to ad hoc 
criteria. The assessment is made by the comparison of projectile residual speeds provided by the 
various techniques, when used to simulate a ballistic impact experiment. The techniques compared 
are the meshfree method known as Smooth Particle Hydrodynamics, a Multi-Material Arbitrary 
Lagrange Eulerian (MM-ALE) technique, and Lagrangian with material erosion. Such comparisons 
inherently have aspects of an apples-to-oranges-to-pears comparison, but an effort has been made to 
minimize the numerous ancillary aspects of the different simulations and focus on the capability of the 
techniques. To minimize unintended differences in the simulations, the following three key aspects 
remain constant: 

1. Only one software package (code) is used, 
2. The same constitutive model is used, 
3. The models were constructed by one analyst with a similar level of experience using the three 

modeling techniques. 
 
Even with these considerable constraints on the simulation comparisons, it is obvious that the results 
are subject to the analyst’s knowledge and skills in applying the various analysis techniques to the 
impact simulation. Thus the reader should not assess the merits of these techniques on the provided 
‘answers,’ but should instead focus on the relative merits of each technique and their applicability to 
simulations of interest. 
 

 
Deformed aluminum projectiles after plate performation. 
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Perforated 0.5 in (12.7 mm) aluminum plate. 

 
Conclusions 
 
The reader is reminded that the ballistic simulation attempted in this work is among the most difficult 
as both the projectile and target experience significant deformation. The deformation of the projectile 
as it interacts with the target affects the deformation of the target, and vice versa. 
 
The introduction of a failure criterion, such as the Johnson-Cook failure criterion, is clearly necessary 
for Lagrange models, and appears to also be necessary for SPH models. Since failure models are not 
permitted in Eulerian solutions, those simulations results over predicted the strength of the target, and 
thus provided very low projectile residual speeds. 
 
A better overall approach than on-off failure models, like the Johnson-Cook failure model, would be 
the use of continuum damage models. These models allow for the gradual reduction in strength of 
highly deformed materials and can be used in all three solution techniques. The damage model 
approach has been used by the author in a similar three solution method study for perforation of 
concrete targets. 
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1 INTRODUCTION 

 
Simulation of penetration and perforation events requires a numerical technique that allows one body 
(penetrator) to pass through another (target). Traditionally these simulations have been performed 
using either an Eulerian approach, i.e. a non-deformable (fixed) mesh with material advecting among 
the cells, or using a Lagrangian approach, i.e. a deformable mesh with large mesh deformations. The 
chief criticism of the Eulerian approach has been that the shape of the penetrating body, usually an 
idealized rigid projectile, becomes ‘fuzzy’ as the penetration simulation proceeds due to the mixing of 
advected materials in the fixed Eulerian cells. Lagrangian methods require some form of augmentation 
to minimize or eliminate large mesh distortions. Two1 often used augmentations for Lagrangian 
penetration simulations are the so called ‘pilot hole’ technique and material erosion. In the pilot hole 
technique elements are removed, a priori, from the target mesh along the penetrator trajectory; this 
technique works (surprisingly) well for normal impacts where the trajectory is know a priori. The 
material erosion technique removes distorted elements from the simulation, also along the penetrator 
trajectory, based upon a user supplied criterion; no general guidance exists for selecting such criteria, 
i.e. they are ad hoc. 
 
The focus of the present work is to perform an assessment of a relatively new class of numerical 
methods, referred to as meshfree methods, that offer analysts an alternate analytical technique for 
simulating this class of ballistic problems, without a priori trajectory knowledge, nor resorting to ad hoc 
criteria. The assessment is made by the comparison of projectile residual speeds provided by the 
various techniques, when used to simulate a ballistic impact experiment. The techniques compared 
are the meshfree method known as Smooth Particle Hydrodynamics, a Multi-Material Arbitrary 
Lagrange Eulerian (MM-ALE) technique, and Lagrangian with material erosion. Such comparisons 
inherently have aspects of an apples-to-oranges-to-pears comparison, but an effort has been made to 
minimize the numerous ancillary aspects of the different simulations and focus on the capability of the 
techniques. To minimize unintended differences in the simulations, the following three key aspects 
remain constant: 

4. Only one software package (code) is used, 
5. The same constitutive model is used, 
6. The models were constructed by one analyst with a similar level of experience using the three 

modeling techniques. 
 
Even with these considerable constraints on the simulation comparisons, it is obvious that the results 
are subject to the analyst’s knowledge and skills in applying the various analysis techniques to the 
impact simulation. Thus the reader should not assess the merits of these techniques on the provided 
‘answers,’ but should instead focus on the relative merits of each technique and their applicability to 
simulations of interest. 
 

2 DESCRIPTION OF THE BALLISTIC EXPERIMENT 

 
A series of metal plate impact experiments, using several projectile types, have been performed. For 
the present comparative study, the only target considered is 0.5 inch (12.7 mm) thick 6061-T6 
aluminum plate. The plate has a free span area of 8 by 8 inches (203 by 203 mm) and was fixtured as 
shown in Figure 1. 
 
The plate was nominally center impacted by a blunt projectile, also made from 6061-T6 aluminum, 
with an impact speed of 3181 feet/second (970 meters/second). The orientation of the projectile 
impact was intended to be normal to the target. The projectile is basically a right circular cylinder of 
length 0.974 inches (24.7 mm) and diameter 0.66 inch (16.7 mm), with a short length of reduced 
diameter (shoulder) at the rear of the projectile.  
 

                                                     
1 Remeshing, e.g. adaptive meshing, is another possibility, but is generally not available for 3D hexahedra 
meshes. 



7th European LS-DYNA Conference 
 

 
© 2009 Copyright by DYNAmore GmbH 

 
Figure 1 Schematic of impact plate configuration and fixture. 

 
The projectile’s observed exit speed was 1130 feet/second, or a 65% reduction in speed. The 
deformed target and projectile are shown in Figure 2 and Figure 3, respectively. As can be seen the 
target is essentially ‘drilled out’ by the projectile, i.e. a clean hole remains in the target plate. Also, the 
lack of ‘petals’ on the exit surface of the target indicates the hole was formed by concentrated shear 
around the perimeter of the hole. 
 
The deformed projectiles, shown in Figure 3, indicate the increasing amount of projectile deformation 
as it perforates increasingly thicker targets: 0.125 to 0.5 inch. The deformed projectile on the right is 
the case of present interest. 
It is worth noting that the simulation of deformable projectiles perforating deformable targets is a 
challenging class of ballistic simulations; recent work by Borvik, et al (2009) supports this claim. The 
vast majority of perforation simulations involve nearly rigid projectiles impacting deformable targets. 
Although deformable projectile calculations form a special, and limited, class in ballistics, establishing 
confidence in the simulation of this challenging class of problems will lend further confidence to the 
comparatively easier simulation of near rigid projectile perforating deformable targets. 
 
Details of the experimental result are included at the beginning of this document to emphasize that no 
pretense is made that the simulations results that follow are predictive of the experiment, i.e. the 
experimental result was known prior to performing the simulations. It is imperative in any such 
experiment-to-simulation comparison to sate clearly if the simulations were performed with or without 
knowledge of the experimental results. 
 
In the numerical results that follow, several essentially numerical factors, i.e. factors that cannot be 
measured directly in the laboratory, but rather are numerical artifacts, contained in all such 
simulations, are assessed. The experimental results only provide a touchstone to gauge how changes 
in numerical artifacts vary the numerical results, relative to an observation. 
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Figure 2 Side (upper image) and front (lower image) views of perforated 6061-T6 aluminum 0.5 inch 
thick target. 

 

 
Figure 3 Deformed 6061-T6 aluminum projectiles after perforation 0.125, 0.25, and 0.5 inch thick (left-
to-right) aluminum targets. 

 

3 MODEL DISCRETIZATIONS 

 
This section describes the Lagrange with erosion, a Multi-Material Arbitrary Lagrange Eulerian (MM-
ALE) and Smooth Particle Hydrodynamics (SPH) models used in the analyses. 
 

3.1 Lagrange with Erosion Model 

 
Four mesh refinement models were constructed using the two-dimension axisymmetric solver in LS-
DYNA. While the three-dimensional solver could also be used, use of the two-dimension axisymmetric 
solver allows for more efficient solutions, especially with a large number of elements. Figure 4 shows 
two of the four axisymmetric mesh configurations. The mesh discretizations are similar in that each 
mesh uses one number as the basis for determining the number and size of all the elements in the 
mesh. The base number is the number of elements through the radial thickness of the shoulder region 
at the aft end of the projectile. This thickness is 1.778 mm and the coarsest mesh, shown in Figure 4, 
uses two elements across this shoulder dimension, and is designated as “Mesh 2S,” just to assign a 
name. The particulars of the four meshes are summarized in Table 1. 
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Table 1 Summary of mesh configurations for erosion simulations. 

Mesh Smallest Element (mm) Number of Elements 
2S 0.889 811 
4S 0.4445 3,174
8S 0.22225 12,913 

12S 0.14816 28,922 
 

 
Figure 4 Two of the four axisymmetric mesh discretization considered for the Lagrange with erosion 
simulations: 2S top and 8S bottom. 

 
The overall projectile and target plate dimensions were given above in the description of the ballistic 
experiment. There is a break in the meshing of the target plate at a radius of 50.8 mm to allow for 
additional coarsening of the mesh via a geometric ratio of the element sizes. A similar ratio of 
elements is used in the target plate from the outer diameter of the projectile to the division at 50.8 mm. 
The target plate elements immediately below the projectile have the same mesh refinement as the 
projectile. 
 
The boundary conditions for the axisymmetric problem are not the same as those in the ballistic 
experiment and shown in Figure 1, i.e. fixed-free. The axisymmetric model is fully constrained around 
the outer diameter of the target plate, i.e. fully fixed (clamped). This is considered a reasonable 
approximation as there is very little bending of the relatively thick target plate observed in the ballistic 
experiment. 
 
An initial velocity of 3181 fps (969.5 m/s) is prescribed for all the nodes comprising the projectile. 
 

3.2 Multi-Material ALE Model 

 
The axisymmetric meshes used for the MM-ALE simulations are essentially identical to those used for 
the Lagrange with erosions simulations, with the addition of so called vacuum material surrounding the 
projectile and target, as shown in Figure 5. The vacuum material is needed to provide an Eulerian 
computational domain into which the projectile and plate materials can flow (advect). 
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Typically MM-ALE mesh densities need to be greater than mesh densities suitable for solid Lagrange 
element simulations, as this improves the accuracy of the advection algorithms in the MM-ALE solver. 
In the present case, the Lagrange mesh densities, especially the 8 & 12S meshes, are already greater 
than would be found in a typical perforation simulation. Thus to minimize the number of mesh 
variables in the simulation comparison, the MM-ALE and Lagrange mesh densities were identical. 
 
The boundary and initial conditions are the same as those specified for the Lagrange with erosion 
models. 
 

 
Figure 5 Coarsest axisymmetric discretization considered for the MM-ALE simulations. 

 

3.3 SPH Model 

 
LS-DYNA does not have an axisymmetric solver for SPH, so the SPH models are three dimensional, 
but take advantage of two planes of symmetry, i.e. only ¼ of the full geometry is modeled. Since both 

projectile and target have the same material density, i.e. aluminum 
3 32.7 10  g/mm , the desired 

nearly uniform spacing of particles in both the projectile and target is easily obtained. For the coarsest 
SPH model, see Figure 6, the particle spacing is about 0.93 mm in all three spatial dimensions. This 
results in 1,536 particles in the projectile and 28,665 particles in the central region of the target plate; 
the outer region of the target plate, shown in Figure 6, is modeled with Lagrange solid elements. The 
particle spacing for the other two SPH models is given in Table 2. 
 
The boundary conditions for the SPH model are the same as those shown in Figure 1, i.e. fixed 
(clamped) on one pair of sides and free on the other pair of sides. The initial velocity of 3181 fps 
(969.5 m/s) is prescribed for all the particles comprising the projectile. 
 
Note for the SPH geometry of the projectile, the detail of the shoulder geometry is omitted. The 
projectile is made slightly shorter, i.e. 23 mm for the SPH model versus 24.7 mm measured. The total 
mass of slightly shorter length SPH projectile is thus the same as the projectile used in the 
experiments. 
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Table 2 Summary of spacing and number of particles for SPH models. 

Mesh Particle Spacing (mm) Number of Particles 
0.93 0.93 30,201 
0.64 0.64 102,940 
0.42 0.42 350,904 

 

 
Figure 6 Coarsest 3D discretization considered for the SPH simulations. 

 

4 Material Modeling 

 
The Johnson-Cook material model is used to represented the constitutive behavior of the 6061-T6 
aluminum of both the projectile and target. The parameters used in the Johnson-Cook material model 
are those obtained from the 1989 LANL report by Johnson and Holmquist. These parameters are 
summarized in an appendix. Additionally, the polynomial equation-of-state for 6061-T6, reported by 
Vahedi and Khzaraiyan (2004), is provided in the appendix, and used in the simulations. 
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In addition to the above strength portion of the Johnson-Cook model, there is an element failure 
criterion, see Table 11, that allows for the immediate2 reduction in element stress to zero, i.e. erosion, 
when the criterion is satisfied: 
 

                                                     
2 The use of the damage mechanics notation, D , for the failure parameter often causes this portion of the 
Johnson-Cook model to incorrectly be referred to as a damage model. It is a failure model that does not include 
damage. 
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The Johnson-Cook failure criterion was developed for use with Lagrange solid elements to allow for 
element erosion. It is generally considered to be a good erosion criterion, as it is based on physical 
observations and includes the effect of stress triaxiality, i.e. the ratio of the pressure to the von Mises 
stress, which is considered essential in predicting failure. However, the failure criteria is not 
regularized by a characteristic mesh size, and thus the erosion results are expected to be mesh 
dependent. 
 
Erosion criteria are typically only used with Lagrange solid elements. They cannot be used with 
Eulerian techniques as there is no concept of cell (element) removal in the Eulerian framework. 
Similarly, erosion criteria are not typically associated with particle methods, such as SPH and Element 
Free Galerkin (EFG). These particle methods were specifically designed to handle large deformations 
without the problems of mesh distortion that plagues Lagrange solid elements, and hence there is no 
need to erode particles. However, in this work consideration will be given to including erosion 
(stresses set to zero) in the SPH model comparisons. 
 
Finally, the Johnson-Cook model implementation in LS-DYNA also includes a tensile stress, pressure 
limit, or failure criterion, referred to as a spall criterion. For a specified value of tension, PC<0, three 
spall criteria are available: 

1. Tensile pressure limited to PC. 
2. When the maximum tensile stress >= -PC, element stresses are set to zero and tensile 

pressures (P<0) are never allowed. 
3. When the pressure <= PC, element stresses are set to zero and tensile pressures (P<0) 

are never allowed. 
Case 1 limits the tensile pressure and Cases 2 & 3 fail (set the stresses to zero) elements. This work 
also looks at the effect of including this spall criteria in the Lagrange perforation simulations. 
 

5 Simulation Results 

 
A suite of impact simulations were performed using the above described 6061-T6 aluminum projectile 
and 6061-T6 aluminum target. The projectile was given an initial velocity of 3181 feet/second (970 
meters/second) and projectile’s speed was recorded at point near the rear of the projectile. The 
resulting residual speed was thought to best correspond to the experimental measurement technique 
for residual speed.  
 

5.1 Lagrange Element Erosion Simulation Results 

 
Using the Johnson-Cook failure criterion eliminates the need to select an erosion criterion and a value 
of the criterion at which to erode elements. These are two significant difficulties most often overlooked 
in using an erosion based simulation technique. Many users select ad hoc erosion criterion and assign 
ad hoc values for erosion. But seem to ignore the fact that the results are thus also ad hoc, not a 
desirable trait when making predictive calculations. 
 
As mentioned above, the Johnson-Cook failure model is not regularized via element characteristic 
lengths and thus we expect the results to be mesh dependent. It is the purpose of this section to 
assess this mesh dependency using four successively refined mesh. Subsequently, theses Lagrange 
erosion results will be compared with the corresponding MM-ALE and SPH results. 
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5.1.1 No Spall Results 

 
The results presented in this section attempt to omit the effect of the LS-DYNA tensile spall 
implementation by setting PC=-1E6, i.e. a large tensile pressure criterion, and setting the spall type to 
Case 1, i.e. tensile pressure limited to PC. 
 
Figure 7 shows the initial and deformed (T=0.053 ms) mesh configurations for the 8S mesh. Also 
shown is an illustration of the eroded element distribution at the end of the simulation. The eroded 
elements are indicated relative to their initial position using a different color to differentiate them from 
the non-erode elements of the same part. 
 
Table 3 summarizes the residual speed of the projectile for the four mesh configurations considered. 
With the exception of the 8S Mesh speed, which indicates a somewhat larger projectile speed 
reduction, the projectile speeds are decreasing nearly uniformly with increasing mesh refinement. 
 
Figure 8 shows a plot of the residual speed versus the mesh refinement parameter. This plot indicates 
that either the 8S or 12S result does not follow the developing trend. In any case, by viewing this plot 
no claim can be made that the results are in the asymptotic regime, much less converged. This is 
disappointing since the mesh densities for these two cases are likely much greater than would be 
attempted in typical three dimensional simulations. 

 
Figure 7 Initial, eroded element, and deformed Lagrange with erosion 8S mesh configurations. 

 
Table 3 Summary of Lagrange erosion residual speeds without spall. 

Mesh Smallest Element (mm) Residual Speed (fps) 
2S 0.889 1864 
4S 0.4445 1748 
8S 0.22225 1647 

12S 0.14816 1736 
Experiment 1103 
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Figure 8 Plot of residual speed versus mesh refinement parameter. 

 

5.1.1.1 Non-Local Response 

 
As mentioned above, the results presented using the Johnson-Cook failure model are not regularized, 
i.e. they are expected to be mesh (size) dependent. LS-DYNA provides a technique for attempting to 
regularize such failure models via the keyword *MAT_NONLOCAL. The non-local implementation in 
LS-DYNA is based on the work of Pijaudier-Cabot and Bazant (1987). The non-local treatment 
basically attempts to average failure values of neighboring elements to minimize the mesh 
dependency of the results. 
 
The non-local model is a three-parameter model with two of the three parameters assigned the 
‘typical’ value suggested in the LS-DYNA User Manual, viz. P=8 and Q=2. The remaining parameter is 
the radius of the region to be used in performing the averaging. For the present results, this parameter 
was taken as L=2, to cover the 1.77 mm distance that describes the aft shoulder of the projectile; this 
is the dimension used in characterizing all the mesh refinements. The LS-DYNA implementation also 
allows the user to specify a time step frequency for performing the average. The value NFREQ=10 is 
the minimum suggested in the LS-DYNA User Manual, and was used in the present simulations. All 
four of these parameters can be varied, and will likely affect the failure, and thus the residual speed 
results. 
 
Table 4 compares the previous results, see Table 3, without regularization to the same model results 
when the non-local regularization was included. This table indicates the inclusion of regularization 
reduces the projectile residual speed between 50% and 70%, and also provides results in better 
agreement with the experimental observation, as indicated in Figure 9 which compares the two sets of 
computational results with the experimental observation. 
 
Table 4 Comparison of Lagrange erosion results without and with regularization. 

 Residual Speed (fps)  
Mesh No Regularization Non-Local Ratio 

2S 1864 1111 0.60 
4S 1748 872 0.50 
8S 1647 1178 0.72 

12S 1736 N/A  
Experiment 1103  
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Figure 9 Mesh size dependency of projectile residual speed without and with regularization. 

 
The 12S Mesh configuration with regularization terminated abnormally after about 0.018 ms due to a 
negative volume in an element, i.e. excessive element distortion. This illustrates a concomitant effect 
of using regularization, i.e. due to the averaging, severely distorted elements may not be eroded, and 
thus cause the calculation to terminate abnormally. Obviously, adjusting of the non-local parameters 
can be attempted to avoid this problem. But in the end, these non-local parameters are yet another ad 
hoc aspect of using erosion. 
 
As a final note, for the 8S Mesh configuration, the regularized solution required about 60% more CPU 
than without regularization. However, in this case the extra CPU time is more than balanced by the 
more accurate post-diction of the regularized result. 
 

5.1.1.2 Transformed Mesh Responses 

 
As mentioned previously, the Johnson-Cook failure model is expected to be mesh sensitive since it is 
not regularized. The erosion of elements, via the Johnson-Cook failure criterion, is sensitive to more 
than just changes in the mesh. It was discovered that just changing the coordinates of the mesh, via a 
rigid body translation, also affects the results. 
 
Figure 10 shows the deformed configuration of the 8S Mesh at T=0.03 ms, where the same input 
model has been replicated three times via offsetting all the vertical coordinates by 60 mm. While the 
deformed shapes look similar, close examination reveals many small differences in the deformed 
geometry. These difference are graphically illustrated via the projectile speed histories shown in 
Figure 11. This graph shows that although the three projectiles begin at the same speed, and end at 
approximately the same speed, the speed histories are quite different; the differences would be 
greater if the accelerations were the goal of the simulations. The reason for such mesh position 
sensitivity is not known, but users of erosion should be aware that such variability can occur. 
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Figure 10 Deformed configures at T=0.03 ms of 8S Mesh replicated in three vertical positions. 
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Figure 11 Projectile speed histories from replicated mesh simulations. 

 

5.1.2 Spall Results 

 
According to www.matweb.com, the quasi-static ultimate tensile strength of 6061-T6 aluminum is 310 
MPa (44.9 ksi). Assuming a modest strain-rate enhancement of this strength, a strength of PC=-350 
MPa (50.7 ksi) was assigned to the LS-DYNA spall criteria using the Case 2 option, i.e. when the 
maximum tensile stress >= -PC, element stresses are set to zero and tensile pressures (P<0) are 
never allowed. 
Table 5 summarizes the residual speed of the projectile for the four mesh configurations considered 
with the 350 MPa spall criterion. Including the spall criterion increases the projectile’s exit speed 
between 20 and 30% over the corresponding value for the no spall case.  
 
Also, as shown in Figure 12, the inclusion of the spall criterion dramatically affects both the eroded 
element distribution and deformed configuration of the projectile and target plate, compared to the no 
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spall case, shown previously in Figure 7. The reason for the dramatic change in the deformed 
configuration is not known. But based on the computed increase in residual speed, i.e. the speeds are 
further from the observed residual speed, it is recommended that the spall criterion not be activated. 
 
Table 5 Summary of Lagrange erosion residual speeds with 350 MPa spall criterion. 

 Residual Speed (fps)  
Mesh No Spall 350 MPa Case 2 Ratio 

2S 1864 2251 1.21 
4S 1748 2159 1.23 
8S 1647 2156 1.31 

12S 1737 2195 1.26 
Experiment 1103  

 

 
Figure 12 Eroded elements and deformed configuration (T=0.05 ms) with inclusion of spall criterion. 

 

5.2 Multi-Material Arbitrary Lagrange Eulerian Simulation Results 

 
As mentioned above, failure criteria such as the Johnson-Cook failure criterion, cannot be used with 
Eulerian formulations as cell (element) deletion is not allowed. If a user attempts to use a failure 
model, the deletion of failed cells will eventually cause the calculation to terminated abnormally. Thus 
all the MM-ALE simulations in this section omit the Johnson-Cook failure model.  
 
In the absence of a failure criterion, it will be demonstrated that the residual speed of the projectile is 
quite low. Thus results both without and with the LS-DYNA spall criterion are presented. As with the 
Lagrange models, spall is omitted from the simulations via setting PC=-1E6 for Case 1 and a strength 
of PC=-350 MPa (50.7 ksi) was assigned to the LS-DYNA spall criteria using the Case 2 option when 
spall was included. 
 
It is the purpose of this section to assess the mesh dependency of the MM-ALE solution using four 
successively refined mesh. Subsequently, these results will be compared with the corresponding 
Lagrange with erosion and SPH results. 
 
Note: although the same mesh densities are used in both the Lagrange with erosion and MM-ALE 
simulations in this demonstration, in general MM-ALE mesh densities need to be greater than 
corresponding Lagrange with erosion mesh densities. The advection of materials from cell-to-cell, and 
especially the assumption of uniform strain-rate increments for all materials occupying a cell, in the 
MM-ALE solution introduces numerical errors, that can only be minimized via increasing mesh 
densities. For the present demonstration, it is posited that the Lagrange mesh densities are greater 
than would be typical for such a perforation simulation, and thus the MM-ALE mesh densities are 
probably typical of what might be expected. 
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Table 6 compares the previous Lagrange with erosion results with the corresponding MM-ALE 
projectile residual speeds. As indicated in this table, the MM-ALE residual speeds are far lower than 
the Lagrange with erosion speeds, also well below the experimental observation of 1103 fps. 
 
Table 6 Comparison of Lagrange with erosion and MM-ALE projectile residual speeds. 

 Residual Speed (fps) 
Mesh Erosion MM-ALE 

2S 1864 -6.6 
4S 1748 2.6 
8S 1647 59 

12S 1737 220 
Experiment 1103 

 
Figure 13 compares the Lagrange with erosion deformed configuration at T=0.1 ms with the 
corresponding MM-ALE deformed 8S Mesh. In the MM-ALE simulation the projectile has not fully 
perforated the plate, and as indicated in Table 6 has a very small residual speed, i.e. 2.6 fps. 
Conversely, the Lagrange projectile has perforated the plate with a residual speed of 1647 fps. It is 
also apparent in this figure that the MM-ALE plate has deformed considerably more than the Lagrange 
plate. The additional strain energy required to deform the plate in the MM-ALE simulation likely 
accounts for the reduced speed of the projectile. It is also interesting to note that the MM-ALE 
deformed projectile is quite similar in shape to the deformed project after the test, as shown previously 
in Figure 3. 
 
Table 7 compares the MM-ALE results with and with the spall criterion. The addition of the spall 
criterion increases the projectile residual speeds by about a factor of 8, making all the speeds 
considerably larger than the observed speed. 
 
Table 7 Summary of MM-ALE residual speeds without and with spall. 

 Residual Speed (fps) 
Mesh No Spall With Spall 

2S -6.6 1611 
4S 2.6 1693 
8S 59 1788 

12S 220 1834 
Experiment 1103 

 

 
Figure 13 Comparison of 8S Mesh deformed configurations at T=0.1 ms: Lagrange with erosion (left) 
and MM-ALE (right). 
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5.3 Smooth Particle Hydrodynamics Simulation Results 

 
As mentioned above, failure criterion such as the Johnson-Cook failure criterion, are not typically used 
with the Smooth Particle Hydrodynamic (SPH) formulations as particle methods are designed to avoid 
mesh distortions, which is the primary motivation for using failure/erosion criterion. However, recent 
revelations regarding the role of artificial bulk viscosity on SPH solutions has warranted revisiting the 
inclusion of failure models in the SPH solutions. Again, the LS-DYNA spall criterion is omitted from the 
simulations via setting PC=-1E6 for Case 1. 
 
It is the purpose of this section to assess the mesh dependency of the SPH solution using three 
successively refined particle meshes. These results will be compared with the corresponding 
Lagrange with erosion and MM-ALE results. 
 

5.3.1 Artificial Bulk Viscosity for SPH 

 
For a number of years, dating back to 2004, SPH predictive simulations of metal, and concrete, target 
perforation have been successively compared with experimental results. In the author’s earliest work, 
SPH simulations of open literature metal plate perforation experiments and Lagrange with erosion 
analyses, i.e. Borvik et al. (2003), were used to develop confidence in the then relatively new SPH 
solver in LS-DYNA. Preliminary assessments were also made of the effect of particle mesh refinement 
and some aspects of the Johnson-Cook constitutive model. From these, and subsequent studies, it 
was determined that inclusion of the failure portion of the Johnson-Cook model provided projectile 
residual speeds greater than without the failure criterion, which it to be expected. However, these 
greater residual speeds were also typically greater than the residual speeds measured in plate 
perforation experiments. It was recommend to omit the inclusion of the Johnson-Cook failure criterion 
in future SPH perforation simulations. 
 
Recently, the LS-DYNA SPH developer, Jean Luc Lacome, informed the author that the LS-DYNA 
default values for the artificial bulk viscosity3, established originally for Lagrange solid elements, were 
not appropriate when SPH particles were used in a simulation. The SPH recommend values are 
Q1=1.5 and Q2=1.0; the LS-DYNA default values for Lagrange solids are Q1=1.5 and Q2=0.06. 
These values had, by default, been used in all prior SPH simulations. 
 
To assess the effect of changing the artificial bulk viscosity parameter, i.e. Q2=1.0 rather than the 
default Q2=0.06, the above described aluminum projectile impacting an aluminum plate simulation 
was performed using both values of the parameter Q2. The average particle residual speed for the two 
cases were: 

1. 548 fps with the default Artificial Bulk Viscosity Q2=0.06, 
2. 54 fps with the recommend SPH Artificial Bulk Viscosity Q2=1.0 

Although both of these residual speeds are lower than the observed residual speed of 1103 fps, the 
factor of 10 decrease in residual speed when the SPH recommended artificial bulk viscosity is used 
was unexpected. 
 
In what might be an example of two wrongs making a right, the unknowing use of an inappropriate 
value for the artificial bulk viscosity in previous predictions, may have mistakenly lead to the 
recommendation to omit the Johnson-Cook failure criterion. 
 
Inclusion of the Johnson-Cook failure criterion in the same impact simulation provided an average 
particle residual speed of 1312 fps. This residual projectile speed is greater than the measured 1103 
fps speed, but is a much better post-diction than the 54 fps that results when the failure criterion is 
omitted. 
 
It should be noted however that this is yet another ‘calibration’ of a model’s inputs to obtain better 
agreement with an experimental observation. This calibration process is the same process that initially 

                                                     
3 “Artificial bulk viscosity is needed in SPH to prevent interparticle penetration, to allow shocks to form and to 
damp post shock oscillations. Artificial bulk viscosity may however lead to problems such as unwanted heating 
and unphysical solutions.” (Selhammer, 1997) 
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led to omitting the failure criterion when the inappropriate artificial bulk viscosity parameter was used. 
There is no claim that the present model calibration is correct; future predictions of experimental 
results will be used to make this assessment. 
 

5.3.2 Particle Mesh Refinement Results 

 
Much like the mesh refinements using in the Lagrange and MM-ALE calculations, refinements of the 
SPH particle spacing requires changing the spacing in both the impacted region of the target plate and 
the projectile, which is also modeled using SPH particles. Also, as mentioned previously, there is no 
axisymmetric SPH solver in LS-DYNA so all the calculations were performed using a three 
dimensional model where two planes of symmetry were include, i.e. one quarter of the full model was 
analyzed. Figure 14 shows the coarsest SPH model with the projectile and center of the target plate 
modeled using SPH particles and the outer portion of the plate modeled using Lagrange solid 
elements. 
 

 
Figure 14 Coarsest SPH model (0.96 mm particle spacing) with two planes of symmetry and outer 
target plate modeled with Lagrange solid elements. 

 
Table 8 summarizes the three SPH meshes with particle spacing, number of particles, and average 
projectile residual speeds. It is interesting to note that the coarsest SPH mesh has an average particle 
residual speed quite close to the experimental results. However, as the particle mesh is refined, the 
projectile speeds increase, i.e. diverge from the experimental observation. 
 
Table 8 Summary of SPH residual speeds for three particle mesh refinements. 

 Number of Particles  

Mesh 
Particle Spacing 

(mm) 
Projectile Target 

Residual Speed 
(fps) 

Coarse 0.96 1,536 28,665 1094 
Medium 0.64 4,860 98,080 1312 

Fine 0.43 17,064 333,840 1424 
Experiment 1103 

 
Figure 15 shows the initial and final (T=0.1 ms) deformed projectile and target plate configuration for 
the finest SPH mesh. In addition to the target plate ‘plug’ removed from the plate by the projectile 
(darker brown particles on right side of target plate), there is considerable front surface ejecta of both 
projectile (light brown particles) and target plate (barker brown particles). 
 
For this mesh refinement, the deformed projectile remains relatively intact, with the exception of the 
front surface ejecta and portions of the projectile that remain attached to the target plate. The left most 
image in Figure 16 shows the deformed projectile in isolation, i.e. without the target plate. To establish 
an average particle residual speed for the projectile, the x-direction velocity vectors are fringed with 
five levels of fringing. The average of the middle level of velocities, green in this case with a range of 
347 to 521 m/s, e.g. 434 m/s or 1424 fps, is used as the average particle residual speed. 
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Figure 15 Initial and final (T=0.10 ms) configurations for finest SPH mesh (0.43 mm spacing). 

 

 
Figure 16 Projectile only final deformed configuration and with fringed x-velocity vectors. 

 

6 Summary and Comparison of Simulation Results 

 
In the previous sections the results from a laboratory experiment were used as a basis to assess the 
accuracy of the numerical simulations with respect to mesh refinement. For many practical 
applications, the results from experiments are not available. In fact, the lack of experimental data is 
most often the singular motivation for performing numerical simulations. 
 
The simulation results indicate there is both an error associated with the solution technique, e.g. 
Lagrange, MM-ALE, or SPH, and with mesh refinement. The analyst is expected to at a minimum 
address the question of mesh refinement error in the model, i.e. the error due to discretization 
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(calculation verification). Note: calculation verification should always be performed, even when 
experimental data is available for comparison.  
 
To place all the plate perforation simulation results on a similar basis, for comparative purposes, the 
mesh refinement results are evaluated using the Grid Convergence Index (GCI). A widely used 
method for estimating the uncertainty interval of the discretization error, see Roache, 1993. This 
straightforward method, see the appendix for details, uses the results from three4 mesh refinements to 
estimate the discretization error. 
 
In summary, GCI uses the characteristic element size and corresponding projectile residual speed 
values to form a relative error among the three residual speed values, then based upon the relative 
errors and the mesh refinement ratios, /ji j ir r r , an observed convergence rate, p , is computed. 

This observed convergence rate provides an estimate of the rate at which the mesh discretization 
error decreased with decreasing element size. The word ‘observed’ modifies the phrase “convergence 
rate,” so as not to be confused with the theoretical (formal) convergence rate. Example: the central 
difference operator has a theoretical order of convergence 2p  , but software implementations of 

the central difference operator might have an observed order of convergence less than two, due to say 
round-off error. It is generally recommended to use the minimum of the theoretical p  and the 

observed p  if these differ significantly, this provides a more conservative (larger) value of the GCI. In 

the present work, the observed value is used as the theoretical value is unknown. 
 
Having obtained the observed order of convergence, p , the Grid Convergence Index is then defined 

as 

 
21

21
21 1
s a
p

F eGCI
r




 

Where 21
ae  is the relative error between the two finest mesh results, sF  is called a ‘factor of safety,’ an 

empirically determined constant taken as 1.25 when three mesh refinements are used to determine 

GCI. The more conservative value 3sF   is recommend when only two mesh refinements are used, 

or unstructured mesh refinements are performed. 
 
Based upon a large number of numerical experiments (Roache, 1998), it was determined that in 
roughly 95% of the cases studied, the GCI, with the empirical factor of safety, provided an interval that 
contained the numerically exact solution. This 95% confidence interval is determined as: 

    1 21 211 , 1S GCI GCI 
    

where 1S  is the residual speed computed using the finest mesh. 

 
Determining the observed order of convergence, p , also allows calculation of an extrapolated value 

of the residual speed via 

    21 1 2 21/ 1p p
extS r S S r    

where the indices 1 & 2 refer to the most refined and next most refined mesh results, respectively.  
 
Finally, the underlying assumption of GCI is that all the computed results are in the so called region of 
asymptotic convergence, i.e. a region where the mesh discretization error dominates all the other 
solution related errors, e.g. constitutive model evaluation errors. An asymptotic regime assessment of 
the computed results is obtained by examining how well the GCI for the two finest mesh 
discretizations is projected on to the GCI for the two coarsest mesh results, viz. 
 

 32 21 21
pGCI r GCI  

 

                                                     
4 The Grid Convergence Index can also be used with only two mesh refinements, but the estimate of an interval 
that will likely contain the exact numerical solution will be larger. 
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The above is derived from assuming the constancy of the error with mesh refinement, where  
 

 
32

32
32 1
s a
p

F eGCI
r




 

 
For convenience we define a asymptotic check as 
 

 32

21 21

AC p
GCI

r GCI
  

 
Where values near unity indicate the asymptotic regime has been attained by the calculated results. 
 
Table 9 summaries the projectile residual speeds for the three solution methods and the various 
associated mesh refinements. Each grouping of three mesh refinements includes the: 

 Estimated numerically converged result (Predicted), 
 Interval which will likely contain the numerically exact solution. 
 Observed order of convergence, p , 

 Grid Convergence Indices, 21 32 and GCI GCI  

 Asymptotic regime check. 
The hope in compiling these results is that they will provide an indication of which formulation might be 
preferable for making model predictions, and what level of discretization should be recommended. 
 
Figure 17 is a graphic representation of the predicted intervals of the exact numerical solution for the 
best of each of the three analysis techniques, e.g. Erosion (2-4-8), MM-ALE (4-8-12) Spall, and SPH 
in Table 9. Although the Erosion (2-4-8) interval is the only interval to include the observed 1103 fps 
value, the interval is so large, with a GCI of 52%, as to be near useless for predictions. The MM-ALE 
interval, with a GCI of 21%, is an improvement over the Lagrange with erosion interval, but as 
discussed below this MM-ALE simulation include spall rather than the Johnson-Cook failure criterion. 
Finally, the SPH interval, with a GCI of 10%, provides the most narrow interval, but provides a 
predicted residual speed that is about 40% greater than the observed residual speed. 
 

6.1 Lagrange with Erosion 

 
Examining first the Lagrange with erosion results in Table 9, and without considering the experimental 
observation, it would appear the results in the first row, i.e. Erosion (2-4-8S), provide the ‘best’ of the 
Lagrange results. The asymptotic check value of 0.94 indicates the three computed results are in the 
asymptotic regime. This is not true for the other two Lagrange studies. The failure to achieve the 
asymptotic regime for the other two cases is due to the oscillatory nature of the computed results, i.e. 
the results are not monotonic, as is expected in the asymptotic regime. It is possible that had the non-
local 12S mesh produced a result, recall it terminated abnormally, the non-local results for the three 
finest meshes might have been the best set of results. 
 
All three sets of Lagrange with erosion results have an observed order of convergence less than two, 
which is considered a favorable indication, since few numerical methods have orders of accuracy 
greater than two. Further, there is no clue as to what the expected order of convergence should be for 
such problems5, but an educated guess would be unity or less. 
 
Unfortunately, the Lagrange results in the first row have a very large value of GCI of 52% which 
results in a large interval for the expected numerically exact solution. While both the 12S Lagrange 
result, and the experimental observation lie within this interval, such a large interval is not very useful 
when making predictions. 
 

                                                     
5 This is not a continuum problem in the traditional sense as the end result is a discontinuum. 
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Table 9 Summary of residual projectile speeds and GCI results. 

 
Projectile Residual Speed (fps)  

Coarse
 

Medium
 

Fine Predicted Interval p  
21GCI  32GCI

 AC 

Erosion  
(2-4-8) 

1864 1748 1647 956 
783 - 
2512 

0.19 0.52 0.57 0.94 

Erosion  
(4-8-12) 

1748 1647 1736 1844 
1601 - 
1871 

1.47 0.08 0.04 0.31 

Non-Local 
(2-4-8) 

1111 872 1177 1444 
844 - 
1511 

1.10 0.28 0.30 0.49 

MM-ALE 
(2-4-8) 

-7 3 59 70 
45 -      
73 

2.61 0.23 0.85 0.60 

MM-ALE 
(4-8-12) 

3 59 220 224 
215 -  
225 

9.10 0.02 0.00 0.00 

MM-ALE 
(2-4-8) 
Spall 

1611 1693 1788 2379 
1049 - 
2527 

0.22 0.41 0.38 0.78 

MM-ALE 
(4-8-12) 

Spall 
1693 1788 1834 2136 

1457 - 
2211 

0.35 0.21 0.24 1.03 

SPH 1094 1312 1424 1541 
1278 - 
1570 

1.65 0.10 0.22 1.09 

Experiment    1103      
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Figure 17 Comparison of predicted intervals from the best of the three analysis methods. 

 
Finally, the results in Row 3, labeled “Non-Local,” represent the addition of a physics based concept 
that generally is expected to improves the results obtained when erosion is used. Again, failure of the 
12S mesh simulation to terminate normally precluded further consideration of mesh refinements. While 
it would be possible to revisit these non-local simulations with different parameters for the non-local 
averaging, any set of such parameters remains an ad hoc choice and thus suspect in terms of making 
predictions. 
 
Figure 18 compares the Lagrange with erosion deformed projectiles both with and without 
regularization, i.e. non-local, for the 4 mesh refinements considered. A general trend seems to be as 
the mesh is refined, the resulting deformed projectile more closely resembles the observed deformed 
projectile. The exception to this trend is the ‘point’ that protrudes from the front of the projectile. This 
‘point’ appears to be due to target elements erroneously being eroded along the axis of symmetry. 
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Figure 18 Comparison of Lagrange with erosion deformed meshes at about T-0.08 ms. Left column 
‘no regularization’ and right column with addition of non-local formulation. 

 

6.2 Multi-Material ALE 

 
The first two Eulerian formulations entries in Table 9, labeled “MM-ALE” for Multi-Material Arbitrary 
Lagrange Eulerian, should be rejected out-of-hand, as the asymptotic check values are far from unity, 
and the observed order of convergence in both cases is greater than two.  
 
The reason for the poor performance of the MM-ALE formulations is not known. However, it is 
recognized that typically more dense meshes are required for MM-ALE simulations than for the 
corresponding Lagrange mesh density. The present view is the MM-ALE meshes were refined 
enough, and the Lagrange meshes were more refined than necessary. It is more likely that the 
advection of material, e.g. from target plate into surrounding vacuum, over predicts the motion of the 

8S Mesh 

12S Mesh 

4S Mesh 

2S Mesh 
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target plate and thus effectively reduces its stiffness, and allows for a ‘soft catch’ of the projectile and 
an associated reduced projectile residual speed; look again at deformed configuration comparison 
shown previously in Figure 13. 
 
Recall that the Johnson-Cook failure model cannot be included in the Eulerian simulations as the 
notion of removal of a cell in the Eulerian context is not permitted. In an effort to compensate for the 
failure criterion omission, the LS-DYNA implementation of spall failure was included; this form of 
failure reduces/limits the stresses in the material without attempting to remove the cell  
 
The MM-ALE mesh refinement results for spall Case 2 option with PC=-350 MPa (50.7 ksi) are 
provided in Table 9 in the third and fourth rows of the MM-ALE portion of the table. As was the case 
when spall was included in the Lagrange with erosion simulations. When spall is included in the MM-
ALE simulations, the predicted residual speeds of the projectile are quite large, more than twice the 
observed value. However, these results do indicate they converge in or near the asymptotic range, 
and with observed orders of accuracy well less than unity. 
 
Figure 19 compares the MM-ALE deformed projectiles for three of the four mesh configurations; a 
similar image could not be generated for the 4S mesh due to a bug in the LS-PrePost. The Eulerian 
calculations, without spall, produce deformed projectiles that look quite similar to the observed 
deformed projectile. However, as noted above, the predicted residual projectile speeds are far from 
the observed value; this likely due to the lack of failure modeling of the material. When spall is 
included in the MM-ALE simulations, the residual speed is about double the observed value, and the 
deformed projectile shape no longer resembles the observed projectile shape; see bottom row in 
Figure 19 comparing deformed 12S meshes. 
 

6.3 Smooth Particle Hydrodynamics 

 
The last row in Table 9 labeled “SPH,” i.e. Smooth Particle Hydrodynamics, provides an asymptotic 
check near unity, has an observed order of convergence less than two, and a relatively low GCI=10%. 
Although the corresponding interval for the expected numerically exact result does not include the 
experimental observation, because of its small GCI value, it does provide a more narrow interval than 
the Lagrange results in Row 1. 
 
Like the MM-ALE results, the SPH residual speeds increase with increasing mesh density, which is 
opposite the general trend for the Lagrange results. An increasing speed with mesh refinement leads 
to predictions of a converged result that is greater than the calculated values. 
 
Finally, the SPH deformed projectile, shown previously in Figure 16, bears little or no resemblance to 
the deformed projectile recovered after the perforations test; see Figure 3. Thus while the SPH 
residual speed results should perhaps be considered reasonable, at least compared to the MM-ALE 
results, the lack of agreement in the deformed projectile shape between the SPH simulations and 
experiment is an indication the ‘right’ answer might be obtained for the ‘wrong’ reason. Future 
perforation experiments should include additional diagnostics, e.g. strain measurements on the target 
plates, so that assessments of agreement can be more broadly based than just residual speed. 
 
Figure 20 compares the SPH deformed projectiles for the three mesh refinement configurations. The 
SPH deformed projectile look the least like the observed deformed projectile of any of the three 
simulation techniques reported. Rather than forming a rounded impact end on the projectile, the SPH 
deformed projectile seem to form more of a ‘jet’ with a narrow diameter at the fore and a tapered 
diameter toward the rear. Also, only the refined mesh appears to maintain the integrity of the 
projectile, i.e. the other two mesh configuration indicate the projectile separates into two parts. Finally, 
it appears as if some of the projectile material remains on the inner diameter of the hole formed in the 
target plate. It is not clear if this was observed in the test. 
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Figure 19 Comparison of MM-ALE deformed meshes at about T=0.08 ms. 

 

7 Conclusions 

 
The reader is reminded that the ballistic simulation attempted in this work is among the most difficult 
as both the projectile and target experience significant deformation. The deformation of the projectile 
as it interacts with the target affects the deformation of the target, and vice versa. 
 
The introduction of a failure criterion, such as the Johnson-Cook failure criterion, is clearly necessary 
for Lagrange models, and appears to also be necessary for SPH models. Since failure models are not 
permitted in Eulerian solutions, those simulations results over predicted the strength of the target, and 
thus provided very low projectile residual speeds. 
 
A better overall approach than on-off failure models, like the Johnson-Cook failure model, would be 
the use of continuum damage models. These models allow for the gradual reduction in strength of 
highly deformed materials and can be used in all three solution techniques. The damage model 
approach has been used by the author in a similar three solution method study for perforation of 
concrete targets. 

2S Mesh 

8S Mesh 12S Mesh 

12S Mesh 12S Mesh 
Spall 350 
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Figure 20 Comparison of SPH deformed meshes at about T=0.08 ms. 

 
The importance of mesh refinement has been emphasized in this work. This relatively simple to 
perform assessment of how the key results change with mesh density is all too often overlooked in 
computational solid mechanics. Further, establishing that the results are in the asymptotic regime 
provides some confidence that the mesh density is adequate. Note: results in the asymptotic regime 
are converged, i.e. the discretization error is a minimum, but they are not necessarily correct. The 
question to be answered is “Is it better to have a possibly wrong answer from a converged mesh, than 
a wrong answer from an unresolved mesh?” 
 
When predictions are required, analysts want as many checks and assurances as possible that their 
results are credible. Mesh refinement studies provide the analyst some confidence the results are at a 
minimum not being affected by ad hoc choices of discretization. 
 

Coarse Mesh Medium Mesh 

Fine Mesh 
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Finally, it should be emphasized that only a few of the numerous numerical artifacts associated with 
the presented solution techniques have been explored in the present work. For example, the MM-ALE 
solver has three optional advection algorithms, and the SPH solver has seven optional particle 
formulations. When making predictions of consequence, it is the responsibility of the analysts to 
assess the effects of all such numerical artifacts on the numerical results. 
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9 Appendix 6061-T6 Aluminum Johnson-Cook Parameters 

 
The Johnson-Cook parameters for 6061-T6 aluminum, see Table 10, are those reported by Johnson 
and Holmquist in their 1989 LANL Technical Report. 
 
Table 10 Johnson-Cook strength model parameters for 6061-T6 aluminum. 

Parameter Value 

A  
47.0 ksi 

324.1 MPa

B  
16.5 ksi 

113.8 

N  0.42 

C  0.002 

M  1.34 

0  -11.0 sec  
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Table 11 Johnson-Cook failure model parameters for 6061-T6 aluminum. 

Parameter Value

1D  -0.77 

2D  1.45 

3D  -0.47 

4D  0.0 

5D  1.6 
 

10 Appendix 6061-T6 Aluminum Equation-of-State 

 
The linear polynomial equation-of-state parameters for 6061-T6 aluminum, see Table 12, are those 
reported by Vahedi and Khzaraiyan (2004). 
 
The LS-DYNA linear polynomial equation-of-state has the function form: 
 

  2 3 2
0 1 2 3 4 5 6P C C C C C C C E            

 

Where 0/    the ratio of the current to initial density. 

 
Table 12 Linear Polynomial EOS for 6061-T6 Aluminum. 

Parameter Value 

0C  0 

1C  74.2 GPa

2C  60.5 GPa

3C  36.5 GPa

4C  1.96 

5C  0 

6C 0 

0E 0 

0V 1 
 

11 Appendix - Grid Convergence Index (GCI) 

 
The uncertainty interval of the discretization error will be estimated using a method popular in the 
Computational Fluid Dynamics (CFD) community called the Grid Convergence Index (GCI), due to 
Roache (1994). Readers new to the concept of discretization error estimation are encouraged to 
review the very nice summary provided on the web at  

http://www.grc.nasa.gov/WWW/wind/valid/tutorial/spatconv.html 
 
The basic idea is to assume the discretization error, E , can be expressed as 

   p
exactE f h f ch    (3) 
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where  f h  is the numerical result for grid size h , exactf  is the exact solution, c  is an unknown 

constant, and p  is the order of convergence, e.g. the central difference operator is order 2 so 2p  . 

Note higher order terms, contributing to the error, have been neglected. Taking the logarithm of 
Equation (3) provides 

      log log logE c p h   (4) 

A plot of the logarithm of the error versus the logarithm of the mesh size would then yield the order of 
convergence, p , as the slope of this curve. This slope is referred to as the observed order of 

accuracy, since the numerical results will contain error due to higher order terms. 
 
In typical applications the exact solution is not available. However if three meshes are constructed with 

a constant grid refinement ratio, r , e.g. 3 2 2 1/ / 2r h h h h    where 1 2 3h h h  , then Equation (4) 

can be rewritten as 
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

  (5) 

The Grid Convergence Index (GCI) provides an estimate of the amount of discretization error in the 
finest grid solution relative to the asymptotically converged numerical solution. Determination of the 
GCI requires estimating the observed convergence rate, but it does not require a constant mesh 
refinement ratio; a computational burden in three dimensional problems. The GCI is give by 
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The term  

 21 1 2

1
a

f f
e

f
  (7) 

is the relative solution difference between the finest grid solution, 1f , and the next coarsest grid result, 

2f . Similarly, 21
pr  is the grid refinement ratio between these two finest grids, and the factor 1.25 is a 

‘safety factor’ based on experience applying GCI in many situations. (If Fs = 1, GCI = the error 
estimate obtained from generalized Richardson Extrapolation [1-2].) The straightforward method of 
estimating the observed order of convergence, p , and the GCI is provided in the document: 

 
ASME Journal of Fluids Engineering Editorial Policy 

Statement on the Control of Numerical Accuracy 
http://journaltool.asme.org/Templates/JFENumAccuracy.pdf 

 
The main elements of the method are repeated here for the reader’s convenience. 
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 (8) 

where 32 3 2 21 2 1 and f f f f      and the first of Equations (8) is solved iteratively using an initial 

guess for   0q p  , i.e. a constant grid refinement ratio. 

 


